Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation. Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription factors essential towards the regulation of myogenesis.Our current interest is to investigate whether down-regulation of MRFs in terminally differentiated mouse myotubes can induce reversal of muscle cell differentiation. Results from this work showed that reduction of myogenin levels in terminally differentiated mouse myotubes can reverse their differentiation state. Down-regulation of myogenin in terminally differentiated mouse myotubes induces cellular cleavage into mononucleated cells and cell cycle re-entry, as shown by re-initiation of DNA synthesis and increased cyclin D1 and cyclin E2 levels. Finally, we provide evidence that down-regulation of myogenin causes cell cycle re-entry (via down-regulation of MyoD) and cellularisation through separate pathways. These data reveal the important role of myogenin in maintaining terminal muscle cell differentiation and point to a novel mechanism by which muscle cells could be re-activated through its down-regulation.
Charcot-Marie-Tooth (CMT) disease is the most common hereditary neuropathy resulting from mutations in 430 genes expressed in either the Schwann cells or the axon of peripheral nerves. The disease is classified into demyelinating (CMT1), axonal (CMT2) or intermediate (CMTI) based on electrophysiological and pathological findings. Our study focused on the identification of a novel disease mutation in a large Sardinian family with CMT2 of autosomal dominant (AD) inheritance. All available family members were clinically evaluated and samples were collected from consenting individuals. Initially, we excluded known CMT2 genes/loci in this family. We then conducted a genome-wide linkage analysis and mapped the gene to chromosome 9q33-q34. Refined linkage and haplotype analyses defined an 11.6-Mb candidate region with a maximum LOD score of 8.06. Following exclusion of several candidate genes from the region, we targeted the LRSAM1 (leucine-rich repeat and sterile alpha motif-containing 1) gene, very recently found to be associated with autosomal recessive CMT2 in one family. For a more efficient investigation of this large gene, already available proband RNA (cDNA) was initially analyzed. Targeted DNA analysis then confirmed a novel LRSAM1 splice-site (c.2047-1G4A) mutation, causing a frameshift that introduces a stop codon three amino acids further down the new reading frame (p.Ala683ProfsX3). This mutation is located in the C-terminal RING finger motif of the encoded protein and leads to premature truncation of the protein. In the course of our work, a second LRSAM1 mutation dominantly transmitted was identified by another group. Our data further confirms that LRSAM1 mutations are associated with CMT2 of AD inheritance.
Objective To identify disease‐causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. Methods We performed genome‐wide sequencing, homozygosity mapping, and segregation analysis for novel disease‐causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient‐derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. Results We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair‐bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP‐binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5′‐phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. Interpretation We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225–240
These novel connexin32 (Cx32) mutations cause a spectrum of clinical manifestations characteristic of Charcot-Marie-Tooth disease (CMT1X), including demyelinating or intermediate polyneuropathy, which is often asymmetric, and CNS involvement in one family. The position and cellular expression of Cx32 mutations alone cannot fully predict these phenotypic variations in CMT1X.
Systemic sclerosis is an autoimmune rheumatic disease characterised by fibrosis, vasculopathy and inflammation. The exact aetiology of SSc remains unknown but evidences show that various genetic factors may be involved. This review aimed to assess HLA alleles/non-HLA polymorphisms, microsatellites and chromosomal abnormalities that have thus far been associated with SSc. PubMed, Embase and Scopus databases were searched up to July 29, 2015 using a combination of search-terms. Articles retrieved were evaluated based on set exclusion and inclusion criteria. A total of 150 publications passed the filters. HLA and non-HLA studies showed that particular alleles in the HLA-DRB1, HLA-DQB1, HLA-DQA1, HLA-DPB1 genes and variants in STAT4, IRF5 and CD247 are frequently associated with SSc. Non-HLA genes analysis was performed using the PANTHER and STRING databases. PANTHER classification revealed that inflammation mediated by chemokine and cytokine, interleukin and integrin signalling pathways are among the common extracted pathways associated with SSc. STRING analysis showed that NFKB1, CSF3R, STAT4, IFNG, PRL and ILs are the main "hubs" of interaction network of the non-HLA genes associated with SSc. This study gathers data of valid genetic factors associated with SSc and discusses the possible interactions of implicated molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.