Process variations are a major concern in today's chip design since they can significantly degrade chip performance. To predict such degradation, existing circuit and MEMS simulators rely on Monte Carlo algorithms, which are typically too slow. Therefore, novel fast stochastic simulators are highly desired. This paper first reviews our recently developed stochastic testing simulator that can achieve speedup factors of hundreds to thousands over Monte Carlo. Then, we develop a fast hierarchical stochastic spectral simulator to simulate a complex circuit or system consisting of several blocks. We further present a fast simulation approach based on anchored ANOVA (analysis of variance) for some design problems with many process variations. This approach can reduce the simulation cost and can identify which variation sources have strong impacts on the circuit's performance. The simulation results of some circuit and MEMS examples are reported to show the effectiveness of our simulator
Although multiplying delay-locked loops allow clock frequency multiplication with very low phase noise and jitter, their application has been so far limited to integer-N multiplication, and the achieved reference-spur performance has been typically limited by time offsets. This paper presents the first published multiplying delay-locked loop achieving fine fractional-N frequency resolution, and introduces an automatic cancellation of the phase detector offset. Both capabilities are enabled by insertion of a digital-to-time converter in the reference path. The proposed synthesizer, implemented in a standard 65 nm CMOS process, occupies a core area of 0.09 mm^2, and generates a frequency ranging between 1.6 and 1.9 GHz with a 190 Hz resolution from a 50 MHz quartz-based reference oscillator. In fractional-N mode, the integrated RMS jitter, including random and deterministic components, is below 1.4 ps at 3 mW power consumption, leading to a jitter-power figure of merit of -232 dB. In integer-N mode, the circuit achieves RMS jitter of 0.47 ps at 2.4 mW power and figure of merit of -243 dB. Thanks to the adoption of the automatic offset cancellation, the reference-spur level is reduced from -32 to -55 dBc
Digital phase-locked loops based on bang-bang phase detectors are attractive candidates for low-jitter clock-frequency multiplication. Unfortunately, the coarse quantization of phase error makes these systems prone to the generation of limit cycles appearing as unwanted spurs in the spectrum. The random noise contributed by building blocks and acting as dithering signal can eliminate those spurs. The quantitative analysis of those phenomena becomes more involved when a DCO with relaxed intrinsic resolution, such as a ΔΣ-DCO is employed, and when practical spectra of random noise sources are considered. In this work, the expression of jitter is calculated in closed-form taking into account the quantization, introduced by both phase detector and DCO, and the phase noise of DCO, with both 1/f^2 and 1/^3 components. Combining these results, a closed-form expression of the total output jitter as a function of loop parameters and noise sources is developed which suggests a minimum-jitter design strategy. The proposed analysis and optimization are validated both numerically and experimentally on a 320-MHz digital bang-bang PLL fabricated in a 65-nm CMOS process
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.