Aims/hypothesis Skeletal muscle is a key target organ for insulin's actions and is the main regulator of blood glucose. In obese individuals and animal models, there is a chronic low-grade inflammatory state affecting highly metabolic organs, leading to insulin resistance. We have described that adult skeletal muscle fibres can release ATP to the extracellular medium through pannexin-1 (PANX1) channels. Besides, it is known that high extracellular ATP concentrations can act as an inflammatory signal. Here, we propose that skeletal muscle fibres from obese mice release high levels of ATP, through PANX1 channels, promoting inflammation and insulin resistance in muscle cells. Methods C57BL/6J mice were fed with normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. Muscle fibres were isolated from flexor digitorum brevis (FDB) muscle. PANX1-knockdown FDB fibres were obtained by in vivo electroporation of a short hairpin RNA Panx1 plasmid. We analysed extracellular ATP levels in a luciferin/luciferase assay. Gene expression was studied with quantitative real-time PCR (qPCR). Protein levels were evaluated by immunoblots, ELISA and immunofluorescence. Insulin sensitivity was analysed in a 2-NBDG (fluorescent glucose analogue) uptake assay, immunoblots and IPGTT. Results HFD-fed mice showed significant weight gain and insulin resistance compared with NCD-fed mice. IL-6, IL-1β and TNF-α protein levels were increased in FDB muscle from obese mice. We observed high levels of extracellular ATP in muscle fibres from obese mice (197 ± 55 pmol ATP/μg RNA) compared with controls (32 ± 10 pmol ATP/μg RNA). ATP release in obese mice fibres was reduced by application of 100 μmol/l oleamide (OLE) and 5 μmol/l carbenoxolone (CBX), both PANX1 blockers. mRNA levels of genes linked to inflammation were reduced using OLE, CBX or 2 U/ml ATPase apyrase in muscle fibres from HFD-fed mice. In fibres from mice with pannexin-1 knockdown, we observed diminished extracellular ATP levels (78 ± 10 pmol ATP/μg RNA vs 252 ± 37 pmol ATP/μg RNA in control mice) and a lower expression of inflammatory markers. Moreover, a single pulse of 300 μmol/l ATP to fibres from control mice reduced insulin-mediated 2-NBDG uptake and promoted an elevation in mRNA levels of inflammatory markers. PANX-1 protein levels were increased two-to threefold in skeletal muscle from obese mice compared with control mice. Incubation with CBX increased Akt activation and 2-NBDG uptake in HFD fibres after insulin stimulation, rescuing the insulin resistance condition. Finally, in vivo treatment of HFD-fed mice with CBX (i.p. injection of 10 mg/kg each day) for 14 days, compared with PBS, reduced extracellular ATP levels in skeletal muscle fibres (51 ± 10 pmol ATP/μg RNA vs 222 ± 28 pmol ATP/μg RNA in PBS-treated mice), diminished inflammation and improved glycaemic management.
Fibroblast growth factor 21 (FGF21) is a pleiotropic peptide hormone that is considered a myokine playing a role in a variety of endocrine functions, including regulation of glucose transport and lipid metabolism. Although FGF21 has been associated with glucose metabolism in skeletal muscle cells, its cellular mechanism in adult skeletal muscle fibers glucose uptake is poorly understood. In the present study, we found that FGF21 induced a dose-response effect, increasing glucose uptake in skeletal muscle fibers from flexor digitorum brevis muscle of mice, evaluated using the fluorescent glucose analog 2-NBDG (300 µM) in single living fibers. This effect was prevented by the use of either Cytochalasin B (5 µM) or Indinavir (100 µM), both antagonists of GLUT4 activity. The use of PI3K inhibitors such as Wortmannin (100 nM) and LY294002 (50 µM) completely prevented the FGF21-dependent glucose uptake. In fibers electroporated with the construct encoding GLUT4myc-eGFP chimera and stimulated with FGF21 (100 ng/mL), a strong sarcolemmal GLUT4 label was detected. This effect promoted by FGF21 was demonstrated to be dependent on atypical PKC-ζ, by using selective PKC inhibitors. FGF21 at low concentrations potentiated the effect of insulin on glucose uptake but at high concentrations, completely inhibited the uptake in the presence of insulin. These results suggest that FGF21 regulates glucose uptake by a mechanism mediated by GLUT4 and dependent on atypical PKC-ζ- in skeletal muscle.
In skeletal muscle (SkM), a reduced mitochondrial elongate phenotype is associated with several metabolic disorders like type 2 diabetes mellitus (T2DM). However, the mechanisms contributing to this reduction in mitochondrial elongate phenotype in SkM have not been fully elucidated. It has recently been shown in a SkM cell line that toll-like receptor 4 (TLR4) contributes to the regulation of mitochondrial morphology. However, this has not been investigated in human SkM. Here we found that in human SkM biopsies, TLR4 protein correlated negatively with Opa1 (pro-mitochondrial fusion protein). Moreover, the incubation of human myotubes with LPS reduced mitochondrial size and elongation and induced abnormal mitochondrial cristae, which was prevented with the co-incubation of LPS with TAK242. Finally, T2DM myotubes were found to have reduced mitochondrial elongation and mitochondrial cristae density. Mitochondrial morphology, membrane structure, and insulin-stimulated glucose uptake were restored to healthy levels in T2DM myotubes treated with TAK242. In conclusion, mitochondrial morphology and mitochondrial cristae seem to be regulated by the TLR4 pathway in human SkM. Those mitochondrial alterations might potentially contribute to insulin resistance in the SkM of patients with T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.