Field trials in Europe with Miscanthus over the past 25 years have demonstrated that interspecies hybrids such as M. 9 giganteus (M 9 g) combine both high yield potentials and low inputs in a wide range of soils and climates. Miscanthus hybrids are expected to play a major role in the provision of perennial lignocellulosic biomass across much of Europe as part of a lower carbon economy. However, even with favourable policies in some European countries, uptake has been slow. M 9 g, as a sterile clone, can only be propagated vegetatively, which leads to high establishment costs and low multiplication rates. Consequently, a decade ago, a strategic decision to develop rapidly multiplied seeded hybrids was taken. To make progress on this goal, we have (1) harnessed Correspondence: John Clifton-
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output–input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed‐based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass‐scale deployment of PBCs.
Growth in planted areas of Miscanthus for biomass in Europe has stagnated since 2010 due to technical challenges, economic barriers and environmental concerns. These limitations need to be overcome before biomass production from Miscanthus can expand to several million hectares. In this paper, we consider the economic and environmental effects of introducing seed based hybrids as an alternative to clonal M. x giganteus (Mxg). The impact of seed based propagation and novel agronomy was compared with current Mxg cultivation and used in 10 commercially relevant, field scale experiments planted between 2012 and 2014 in the United Kingdom, Germany, and Ukraine. Economic and greenhouse gas (GHG) emissions costs were quantified for the following production chain: propagation, establishment, harvest, transportation, storage, and fuel preparation (excluding soil carbon changes). The production and utilization efficiency of seed and rhizome propagation were compared. Results show that new hybrid seed propagation significantly reduces establishment cost to below £900 ha-1. Calculated GHG emission costs for the seeds established via plugs, though relatively small, was higher than rhizomes because fossil fuels were assumed to heat glasshouses for raising seedling plugs (5.3 and 1.5 kg CO2 eq. C Mg [dry matter (DM)]-1), respectively. Plastic mulch film reduced establishment time, improving crop economics. The breakeven yield was calculated to be 6 Mg DM ha-1 y-1, which is about half average United Kingdom yield for Mxg; with newer seeded hybrids reaching 16 Mg DM ha-1 in second year United Kingdom trials. These combined improvements will significantly increase crop profitability. The trade-offs between costs of production for the preparation of different feedstock formats show that bales are the best option for direct firing with the lowest transport costs (£0.04 Mg-1 km-1) and easy on-farm storage. However, if pelleted fuel is required then chip harvesting is more economic. We show how current seed based propagation methods can increase the rate at which Miscanthus can be scaled up; ∼×100 those of current rhizome propagation. These rapid ramp rates for biomass production are required to deliver a scalable and economic Miscanthus biomass fuel whose GHG emissions are ∼1/20th those of natural gas per unit of heat.
Soils of the Mediterranean area are subjected to erosion due to the cropping systems and crop managements adopted. This causes a loss of crop productivity that could be initially replaced with an increase of fertilizers, but in the end leads to land abandonment. The areas subjected to soil erosion in the Mediterranean area cover 1,309,000 km 2 , equal to 15 % of the land of Mediterranean countries. In dry farming condition, the farmer's choices are often constrained by the prevailing climatic conditions. Rainfall amount and distribution represent the main constraints that lead farmers to choose annual autumn-winter crops. In this environment, the growing cycle of autumn-winter crops, such as durum wheat, determines a lack of soil covering during the first rains that occur in early autumn and winter. Soil losses by erosion also determine nutrient losses and affect soil organic matter content. All these aspects are evaluated by ongoing research started in 1996 in an area of the internal hills of Sicily (Italy) in the center of the Mediterranean basin. In this experimental site, on a 27 % slope, the effect of different cropping systems to determine surface runoff and soil losses was evaluated. In each plot, (40×8) m, a series of devices were installed in order to determine the amount of runoff and sediment: four covered trap channels were installed at the bottom of each plot, each channel drained into pipes which emptied into a tank to collect surface runoff and soil losses. After each erosive rainfall, the amount of water, of sediments, and the nitrate-nitrogen were measured. Soil organic matter was determined every fall at 0-30 and 31-60 cm depth. The highest annual values of soil losses were observed in the annual tilled crops, such as the typical Mediterranean crop rotation Bdurum wheat-durum wheat-fallow^(11.2 t ha −1 year −1 ). Very low soil losses were observed in the plots managed with perennial crops, alfalfa (0.34 t ha −1 year −1 ), Italian ryegrass in pure stand and in mixtures with subterranean clover (3.2 t ha −1 year −1 ), and subterranean clover (1.7 t ha −1 year −1 ). The perennial giant miscanthus and moon trefoil reduced soil losses to 0.1 t ha −1 year −1 . The benefit of the cultivation of perennial crops instead of tilled crops was also highlighted in relation to organic matter content. The rotation Bgiant miscanthus (from 1997 to 2001)-moon trefoil (from 2002 to 2015)^made it possible to increase soil organic matter from 1.03 to 2.51 % in the average of the first 60 cm soil depth.
Predictions of future climate scenarios indicate that yields from perennial biomass crops (PBCs) growing in the Mediterranean region are likely to decline due to prolonged drought. Among PBCs, Miscanthus grasses with C4 photosynthesis combine high yield potentials and water use efficiencies. However, the standard commercial clone M. x giganteus (Mxg), with minimal stomatal regulation, is too sensitive to drought for reliable yields in the Mediterranean regions. This paper screened a diverse panel of thirteen Miscanthus genotypes (M. sinensis, M. floridulus, M. sacchariflorus and Mxg) to identify which types could maximize yield under summer drought conditions typical in the South Mediterranean climate. In the second growing season, significant differences were observed for plant height (from 63 to 185 cm), stem number (from 12 to 208 stems plant−1), biomass yield (from 0.17 to 6.4 kg DM plant−1) and whole crop water use efficiency (from 0.11 to 7.0 g L−1). Temporal variation in net photosynthesis, stomatal conductance, transpiration rate and instantaneous water use efficiency identified different strategies adopted by genotypes, and that genotypes selected from M. floridulus and M. sinensis were better adapted to rainfed conditions and could produce six times more biomass than the Mxg. These accessions are being used as parents in experimental breeding aimed at producing future seed-based drought resilient hybrids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.