Background: Suryanamaskar, a composite yogasana consisting of a sequence of 12-consecutive poses, producing a balance between flexion and extension is known to have positive health benefits for obesity and physical fitness management, upper limb muscle endurance, and body flexibility. However, limited information is available on biomechanical demands of Suryanamaskar, i.e., kinematic and kinetic. Aims: The present study aimed to explore the kinematics of spine, upper, and lower extremity during Suryanamaskar to enhance greater understanding of Suryanamaskar required for safe and precise prescription in the management of musculoskeletal disorders. Methods: Three-dimensional motion capture of Suryanamaskar was performed on 10 healthy trained yoga practitioners with 12-camera Vicon System (Oxford Metrics Group, UK) at a sampling frequency of 100 Hz using 39 retro-reflective markers. Data were processed using plug-in-gait model. Analog data were filtered at 10Hz. Joint angles of the spine, upper, and lower extremities during 12-subsequent poses were computed within Vicon Nexus. Results: Joint motion was largely symmetrical in all poses except pose 4 and 9. The spine moved through a range of 58° flexion to 44° extension. In the lower quadrant, hip moved from 134° flexion to 15° extension, knee flexed to a maximum of 140°, and 3° hyperextension. Ankle moved in a closed kinematic chain through 40° dorsiflexion to 10° plantarflexion. In the upper quadrant, maximum neck extension was76°, shoulder moved through the overhead extension of 183°–56° flexion, elbow through 22°–116° flexion, and wrist from 85° to 3° wrist extension. Conclusions: Alternating wide range of transition between flexion and extension during Suryanamaskar holds potential to increase the mobility of almost all body joints, with stretch on anterior and posterior soft tissues and challenge postural balance mechanisms through a varying base of support.
Linear nevus sebaceous syndrome (LNSS) is characterized by nevus sebaceous, mental retardation, seizures, and ocular abnormalities such as complex limbal choistoma. A young male with history of mass in right eye and blackish discoloration of skin over right and left side of forehead since birth presented with foreign body sensation and diminished vision in right eye. Ocular examination showed mass over epibulbar region with chorioretinal coloboma and posterior staphyloma in right eye and megalocornea in left eye. Histopathology report revealed complex limbal choristoma with compound melanocytic nevus. The case was managed by surgical excision of the limbal mass and filling the gap with scleral graft.
Background: Diabetic peripheral neuropathy (DPN) is known to cause impaired balance and eventually increased risk of fall. Yogasanas characterized by slow, gentle transitions into postures with a varying base of support and focus on body awareness during movement hold potential for training balance control. Therefore, the current study aimed to evaluate effect of structured Yogasana intervention compared to conventional balance exercise on static and dynamic balance performance among people with diabetic neuropathy. Methods : Thirty-five people with DPN aged 42–70 years were recruited to Yogasana intervention group ( n = 11), conventional balance exercises group ( n = 10), and Control group ( n = 14) following ethical approval. All participants were evaluated at baseline and post 12-week intervention on star excursion balance test, single-limb stance test, and center of pressure (CoP) excursion for balance performance, Modified fall efficacy scale for fear of falls and lower extremity strength using chair stand test and step-up test. Results: Balance performance (static and dynamic measured by star excursion balance test, single-limb stance test, and CoP excursion, lower extremity strength (using chair stand test and step-up test) demonstrated improvement and fear of fall reduced among Yogasana intervention group ( p = 0.05) and conventional balance exercises group ( p = 0.05) post 12-week intervention. CoP excursion increased in the control group indicating deterioration in balance performance after 12 weeks ( p = 0.05). Post hoc comparison revealed that Yogasana intervention was marginally more effective in improving static and dynamic balance performance compared to conventional balance exercises in all variables of standing balance performance ( p = 0.025). Conclusion: Yogasana and conventional balance exercises were effective in improving static and dynamic balance performance, lower extremity muscle strength, and reducing fear of fall among people with DPN. Yogasana intervention demonstrated marginally greater improvement in static and dynamic balance performance and lower extremity muscle strength compared to conventional exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.