Background:
Suryanamaskar, a composite yogasana consisting of a sequence of 12-consecutive poses, producing a balance between flexion and extension is known to have positive health benefits for obesity and physical fitness management, upper limb muscle endurance, and body flexibility. However, limited information is available on biomechanical demands of Suryanamaskar, i.e., kinematic and kinetic.
Aims:
The present study aimed to explore the kinematics of spine, upper, and lower extremity during Suryanamaskar to enhance greater understanding of Suryanamaskar required for safe and precise prescription in the management of musculoskeletal disorders.
Methods:
Three-dimensional motion capture of Suryanamaskar was performed on 10 healthy trained yoga practitioners with 12-camera Vicon System (Oxford Metrics Group, UK) at a sampling frequency of 100 Hz using 39 retro-reflective markers. Data were processed using plug-in-gait model. Analog data were filtered at 10Hz. Joint angles of the spine, upper, and lower extremities during 12-subsequent poses were computed within Vicon Nexus.
Results:
Joint motion was largely symmetrical in all poses except pose 4 and 9. The spine moved through a range of 58° flexion to 44° extension. In the lower quadrant, hip moved from 134° flexion to 15° extension, knee flexed to a maximum of 140°, and 3° hyperextension. Ankle moved in a closed kinematic chain through 40° dorsiflexion to 10° plantarflexion. In the upper quadrant, maximum neck extension was76°, shoulder moved through the overhead extension of 183°–56° flexion, elbow through 22°–116° flexion, and wrist from 85° to 3° wrist extension.
Conclusions:
Alternating wide range of transition between flexion and extension during Suryanamaskar holds potential to increase the mobility of almost all body joints, with stretch on anterior and posterior soft tissues and challenge postural balance mechanisms through a varying base of support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.