We consider compound as well as arbitrarily varying classical-quantum channel models. For classical-quantum compound channels, we give an elementary proof of the direct part of the coding theorem. A weak converse under average error criterion to this statement is also established. We use this result together with the robustification and elimination technique developed by Ahlswede in order to give an alternative proof of the direct part of the coding theorem for a finite classical-quantum arbitrarily varying channels with the criterion of success being average error probability. Moreover we provide a proof of the strong converse to the random coding capacity in this setting. The notion of symmetrizability for the maximal error probability is defined and it is shown to be both necessary and sufficient for the capacity for message transmission with maximal error probability criterion to equal zero. Finally, it is shown that the connection between zero-error capacity and certain arbitrarily varying channels is, just like in the case of quantum channels, only partially valid for classical-quantum channels.
We consider quantum state merging under uncer tainty of the state held by the merging parties. More precisely we determine the optimal entanglement rate of a merging process when the state is unknown up to membership in a certain set of states. We find that merging is possible at the lowest rate allowed by the individual states.
We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et. al. [Universal quantum state merging, J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by R. Ahlswede. Regarding quantum state merging for AVQS we show by example, that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates. * boche@tum.de. † gisbert.janssen@tum.de 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.