Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease.
Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.
Cadmium (Cd) and arsenic (iAs) are toxic metals ubiquitously present in the environment. Both pollutants exert nonmonotonic dose responses, being mostly cytotoxic at high concentrations but mimicking estrogen (E2) effects at low doses. Xenoestrogenic activity of Cd and iAs has been demonstrated in different hormone-dependent tumor cell lines; however, their actions in vivo remain largely unknown. Here, we investigated whether in vivo administration of low doses of Cd and iAs through drinking water would display xenoestrogenic effects in the anterior pituitary gland and uterus of ovariectomized rats. Cd (1 ppm) and iAs (0.1 ppm) exposure increased the wet weight of anterior pituitary gland and uterus and induced proestrus-and estrus-like vaginal smears. Both metals stimulate cell proliferation of these tissues as they increased the expression of proliferation markers. More importantly, they augmented soluble guanylyl cyclase α1 subunit expression, which has been linked to hormone-dependent tumor progression. Also, Cd and iAs modified protein levels of full-length estrogen receptor α and its truncated variants in an E2-like manner. Anterior pituitary hormone secretion was differentially affected by both metals. Luteinizing hormone synthesis and release were strongly diminished after Cd exposure and only mildly reduced by iAs. Both metals were able to increase prolactin synthesis, although only iAs augmented serum prolactin levels. This study shows for the first time that Cd and iAs exert strong xenoestrogenic effects on anterior pituitary gland at low doses. The differences between Cd and iAs E2-like behavior indicate that other Cd-and iAs-specific mechanisms could be involved. Altogether, these results contribute to the knowledge of reproductive disorders associated with Cd and iAs environmental contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.