Electrically conductive polyaniline (PANI)-coated electrospun poly(vinylidene fluoride) (PVDF) mats were fabricated through aniline (ANI) oxidative polymerization on electrospun PVDF mats. The effect of polymerization condition on structure and property of PVDF/PANI mats was investigated. The electrical conductivity and PANI content enhanced significantly with increasing ANI concentration due to the formation of a conducting polymer layer that completely coated the PVDF fibers surface.The PANI deposition on the PVDF fibers surface increased the Young modulus and the elongation at break reduced significantly. Attenuated total reflectance-Fourier transform Infrared spectroscopy revealed that the electrospun PVDF and PVDF/PANI mats display a polymorph crystalline structure, with absorption bands associated to the β, α, and γ phases.
Poly-ether-ether-ketone (PEEK) is one of the most important biocompatible polymers and its sulfonation has been studied for biomedical applications. The aim of the present study is to produce, to characterize and to assess bioactivity of PEEK coatings with sulfonated PEEK (SPEEK) films. Biomedical grade PEEK (Invibio®, Batch: D0602, grade: NI1) was functionalized using sulfuric acid 98%. SPEEK was dissolved into DMSO or into DMF, both at 10% mass/volume. PEEK bars (N = 18) and cylinders (N = 27) were manufactured by compression molding and heating. SPEEK/DMSO and SPEEK/DMF were drop casted at PEEK bars and dip coated at PEEK cylinders (PEEK + SPEEK/DMSO and PEEK + SPEEK/DMF). Characterization was performed through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and contact angle measurements. Bioactivity was assessed by immersion of samples at SBF for 1, 7 and 21 days, followed by SEM, energy-dispersive analysis (EDX) and FTIR analysis. Statistical analysis was carried out by one-way analysis of variance (ANOVA) (p = 0.05). Characteristic bands of PEEK and SPEEK, were identified through FTIR spectrum analysis, while semicrystallinity was confirmed by XRD. PEEK + SPEEK/DMF showed more evident physicochemical modifications. PEEK + SPEEK/DMSO provided a more regular and hydrophobic surface, observed through SEM and contact angle measurements. SEM/EDX showed that precipitates of calcium were formed at PEEK + SPEEK/DMSO and PEEK + SPEEK/DMF at all experimental times, but materials were not considered bioactive. Interesting surface properties were achieved with SPEEK coatings but the production of SPEEK films at PEEK surface has to be further improved and biologically tested. Schematic diagram showing the methodology applied in this study to prepare PEEK and SPEEK samples, as well as the promising application of the material.
This article reports the potential use of Polypyrrole (PPy) particles as anticorrosive additive on an epoxy water-based paint to increase the corrosion protective property of aluminum-coated panels. AA1200 aluminum panels were painted using the electrophoretic deposition method and the coatings with different concentrations of PPy particles were tested. PPy particles were synthetized by oxidative polymerization of pyrrole (Py) with iron (III) chloride hexahydrate (FeCl 3 .6H 2 O) in the presence of dodecylbenzenesulfonic acid (DBSA). Electrically conducting PPy particles (6.5 S cm −1) were obtained with a size average of 154 nm. The as-prepared PPy particles were added into a water-based epoxy paint and AA1200 panels were coated via electrophoretic deposition method. The corrosion protective properties of e-coated AA1200 panels were evaluated by means of electrochemical impedance spectroscopy over prolonged exposure time in neutral non-aerated 0.1 M sodium chloride NaCl electrolyte. In particular, the addition of 0.4% by weight PPy has improved the coating corrosion protective property with respect to epoxy clearcoat and exhibited the highest value of impedance modulus at low frequency among the studied coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.