We describe a method for inverting Gentzen's cut-elimination in classical first-order logic. Our algorithm is based on first computing a compressed representation of the terms present in the cut-free proof and then cut-formulas that realize such a compression. Finally, a proof using these cut-formulas is constructed. This method allows an exponential compression of proof length. It can be applied to the output of automated theorem provers, which typically produce analytic proofs. An implementation is available on the web and described in this paper.
It has been shown that linear logic can be successfully used as a framework for both specifying proof systems for a number of logics, as well as proving fundamental properties about the specified systems. In this paper, we show how to extend the framework with subexponentials in order to be able to declaratively encode a wider range of proof systems, including a number of non-trivial proof systems such as a multi-conclusion intuitionistic logic, classical modal logic S4, and intuitionistic Lax logic. Moreover, we propose methods for checking whether an encoded proof system has important properties, such as if it admits cut-elimination, the completeness of atomic identity rules, and the invertibility of its inference rules. Finally, we present a tool implementing some of these specification/verification methods.
International audienceDifferent theorem provers work within different formalisms and paradigms, and therefore produce various incompatible proof objects. Currently there is a big effort to establish foundational proof certificates (FPC), which would serve as a common " specification language " for all these formats. Such framework enables the uniform checking of proof objects from many different theorem provers while relying on a small and trusted kernel to do so. Checkers is an implementation of a proof checker using foundational proof certificates. By trusting a small kernel based on (focused) sequent calculus on the one hand and by supporting FPC specifications in a prolog-like language on the other hand, it can be used for checking proofs of a wide range of theorem provers. The focus of this paper is on the output of equational resolution theorem provers and for this end, we specify the paramodulation rule. We describe the architecture of Checkers and demonstrate how it can be used to check proof objects by supplying the FPC specification for a subset of the inferences used by E-prover and checking proofs using these inferences
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.