Stingless bees are an important asset to assure plant biodiversity in many natural ecosystems, and fulfill the growing agricultural demand for pollination. However, across developing countries stingless beekeeping remains an essentially informal activity, technical knowledge is scarce, and management practices lack standardization. Here we profited from the large diversity of stingless beekeepers found in Brazil to assess the impact of particular management practices on productivity and economic revenues from the commercialization of stingless bee products. Our study represents the first large-scale effort aiming at optimizing stingless beekeeping for honey/colony production based on quantitative data. Survey data from 251 beekeepers scattered across 20 Brazilian States revealed the influence of specific management practices and other confounding factors over productivity and income indicators. Specifically, our results highlight the importance of teaching beekeepers how to inspect and feed their colonies, how to multiply them and keep track of genetic lineages, how to harvest and preserve the honey, how to use vinegar traps to control infestation by parasitic flies, and how to add value by labeling honey containers. Furthermore, beekeeping experience and the network of known beekeepers were found to be key factors influencing productivity and income. Our work provides clear guidelines to optimize stingless beekeeping and help transform the activity into a powerful tool for sustainable development.
The purpose of this study was to determine the physicochemical characteristics of pollen collected by the Amazonian stingless bees Melipona seminigra and Melipona interrupta, in order to verify whether their characteristics meet the physicochemical requirements established by the Brazilian Technical Regulation for Identity and Quality of Bee Pollen.Physicochemical analyses were performed through official analytical methods. Results of pollen analyses collected by M. seminigra and M. interrupta were respectively as follows: moisture: 53.39 and 37.12%; protein: 37.63 and 24.00%; lipids: 10.81 and 6.47%; ash: 4.03 and 2.74%; crude fiber: 9.30 and 13.65%; carbohydrates: 25.66 and 44.27%; energy: 350.47 and 331.33kcal%; pH: 3.70 and 3.34; total solids: 46.60 and 62.87%, and water activity: 0.91 and 0.85 foram, respectivamente: umidade: 53,39 e 37,12%; proteínas: 37,63 e 24,00%; lipídeos: 10,81 e 6,47%; cinzas: 4,03 e 2,74%; fibra bruta: 9,30 e 13,65%; carboidratos: 25,66 e 44,27%; energia: 350,47 e 331,33kcal%; pH: 3,70 e 3,34; sólidos totais: 46,60
The occurrence of Aedes aegypti, Culex quinquefasciatus, and mosquitoes of the genus Anopheles potentiate the spread of several diseases, such as dengue, Zika, chikungunya, urban yellow fever, filariasis, and malaria, a situation currently existing in Brazil and in Latin America. Control of the disease vectors is the most effective tool for containing the transmission of the pathogens causing these diseases, and the bacterium Bacillus thuringiensis var. israelensis has been widely used and has shown efficacy over many years. However, new B. thuringiensis (Bt) strains with different gene combinations should be sought for use as an alternative to Bti and to prevent the resistant insects selected. Aiming to identify diversity in the Bt in different Brazilian ecosystems and to assess the pathogenicity of this bacterium to larvae of Ae. aegypti, C. quinquefasciatus, and Anopheles darlingi, Bt strains were obtained from the Amazon, Caatinga (semi-arid region), and Cerrado (Brazilian savanna) biomes and tested in pathogenicity bioassays in third-instar larvae of Ae. aegypti under controlled conditions in the laboratory. The isolates with larvicidal activity to larvae of Ae. aegypti were used in bioassays with the larvae of C. quinquefasciatus and An. darlingi and characterized according to the presence of 14 cry genes (cry1, cry2, cry4, cry10, cry11, cry24, cry32, cry44Aa, cry1Ab, cry4Aa, cry4Ba, cry10Aa, cry11Aa, and cry11Ba), six cyt genes (cyt1, cyt2, cyt1Aa, cyt1Ab, cyt2Aa and cyt2Ba), and the chi gene. Four hundred strains of Bt were isolated: 244 from insects, 85 from Amazon soil, and 71 from the Caatinga biome. These strains, in addition to the 153 strains isolated from Cerrado soil and obtained from the Entomopathogenic Bacillus Bank of Maranhão, were tested in bioassays with Ae. aegypti larvae. A total of 37 (6.7%) strains showed larvicidal activity, with positive amplification of the cry, cyt, and chi genes. The most frequently amplified genes were cry4Aa and cry4Ba, both occurring in 59.4% in these strains, followed by cyt1Aa and cyt2Aa, with 56.7% and 48% occurrence, respectively. Twelve (2.2%) strains that presented 100% mortality within 24h were used in bioassays to estimate the median lethal concentration (LC) for Ae. aegypti larvae. Two strains (BtMA-690 and BtMA-1114) showed toxicity equal to that of the Bti standard strain, and the same LC value (0.003mg/L) was recorded for the three bacteria after 48h of exposure. Detection of the presence of the Bt strains that showed pathogenicity for mosquito larvae in the three biomes studied was possible. Therefore, these strains are promising for the control of insect vectors, particularly the BtMA-1114 strain, which presents a gene profile different from that of Bti but with the same toxic effect.
The diploid male has already been recorded for Melipona Illger, and herein, in Melipona seminigra merrillae Cockerell and Melipona interrupta manaosensis Schwarz. This paper was carried out at the Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil. We produced and monitored 31 new colonies of M. s. merrillae and 32 new colonies of M. i. manaosensis. We sampled 2,995 pupae of M. s. merrillae and 2,020 of M. i. manaosensis. In colonies with a 1 : 1 sex ratio, male diploidy was confirmed by cytogenetic analysis and workers' behavior. We estimated 16 sex-determining alleles in M. s. merrillae and 22 in M. i. manaosensis. In colonies of M. i. manaosensis in a 1 : 1 sex ratio, workers killed the males and the queen that produced them soon after they emerged, as predicted. This behavior was not registered for M. s. merrillae, and sex ratios did not stay 1 : 1, indicating polyandry for this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.