Sources of population heterogeneity may or may not be observed. If the sources of heterogeneity are observed (e.g., gender), the sample can be split into groups and the data analyzed with methods for multiple groups. If the sources of population heterogeneity are unobserved, the data can be analyzed with latent class models. Factor mixture models are a combination of latent class and common factor models and can be used to explore unobserved population heterogeneity. Observed sources of heterogeneity can be included as covariates. The different ways to incorporate covariates correspond to different conceptual interpretations. These are discussed in detail. Characteristics of factor mixture modeling are described in comparison to other methods designed for data stemming from heterogeneous populations. A step-by-step analysis of a subset of data from the Longitudinal Survey of American Youth illustrates how factor mixture models can be applied in an exploratory fashion to data collected at a single time point.
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or categorical, and (b) to quantify the effect of sample size and class proportions on making this distinction. Latent variable models with categorical, continuous, or both types of latent variables are fitted to simulated data generated under different types of latent variable models. If an analysis is restricted to fitting continuous latent variable models assuming a homogeneous population and data stem from a heterogeneous population, overextraction of factors may occur. Similarly, if an analysis is restricted to fitting latent class models, overextraction of classes may occur if covariation between observed variables is due to continuous factors. For the data-generating models used in this study, comparing the fit of different exploratory factor mixture models usually allows one to distinguish correctly between categorical and/or continuous latent variables. Correct model choice depends on class separation and within-class sample size.
Factor mixture models are designed for the analysis of multivariate data obtained from a population consisting of distinct latent classes. A common factor model is assumed to hold within each of the latent classes. Factor mixture modeling involves obtaining estimates of the model parameters, and may also be used to assign subjects to their most likely latent class. This simulation study investigates aspects of model performance such as parameter coverage and correct class membership assignment and focuses on covariate effects, model size, and class-specific versus class-invariant parameters. When fitting true models, parameter coverage is good for most parameters even for the smallest class separation investigated in this study (0.5 SD between 2 classes). The same holds for convergence rates. Correct class assignment is unsatisfactory for the small class separation without covariates, but improves dramatically with increasing separation, covariate effects, or both. Model performance is not influenced by the differences in model size investigated here. Class-specific parameters may improve some aspects of model performance but negatively affect other aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.