Contents In small animal practice, prostatic diseases are increasingly encountered. All dogs may experience prostatic disease, but particular care should be addressed to breeding dogs, in which prostatic affection may lead to decrease in semen quality and fertility. The most common prostatic disease is the benign prostatic hyperplasia (BPH) followed by prostatitis, prostatic neoplasia and prostate squamous metaplasia. These diseases do not have pathognomonic symptoms, therefore, making a correct diagnosis may not be easy. An accurate clinical examination and a correct diagnostic protocol are essential in order to begin the most appropriate treatment, and also to do a good prophylaxis where it is possible. BPH therapy is usually recommended when mild‐severe signs are present or if symptoms disturb the patient. New therapeutic approaches, both medical and surgical, allow to maintain fertility in most animals with prostatic disorders. Prostate cancer is relatively infrequent. Elective therapy is the surgical one, but it is considered palliative and can result in important post‐operative complications. The aim of this paper is to lay down the most appropriate diagnostic process describing the aetiologies of prostatic disease, their symptoms, the right investigative tools and therapy.
High dose medetomidine 0.13 mg/kg can be used for semen collection in cats with variable results in terms of quantity and quality. Therefore, a variation in terms of distribution and elimination among patients has been hypothesised. The aim of the study was to characterise the pharmacokinetics of medetomidine (0.13 mg/kg) administered intramuscularly (IM) in healthy male cats. Eighteen male cats undergoing castration were included, and medetomidine (0.13 mg/kg) was administered IM. Venous blood samples were collected at 20, 30, 40, 50, 60, 75 and 90 minutes after medetomidine administration. Before orchiectomy, at T20, sperm collection was attempted. Plasma medetomidine concentrations were determined by liquid chromatography/mass spectrometry analysis. Semen collection was successful in 15/18 cats. The medetomidine plasma concentration following the IM administration of a bolus was best described using a non-compartment model. Time of maximum concentration was observed at 40 minutes (range 20–90); maximum concentration was 32.8 ng/mL (range 26.8–51.2). The median apparent clearance was 11.9 mL/kg/minute (range 0.7–43.8). In conclusion, medetomidine administered IM at 0.13 mg/kg reached its peak plasma concentration slowly and with variability among patients. In addition, it was characterised by low total body clearance probably due to the cardiovascular alterations associated with medetomidine administration.
Placenta is essential for the development of the fetus, and its impaired function can lead to a negative outcome (i.e., neonatal mortality). In dogs, investigations on placenta histology and neonatal outcome in healthy bitches are lacking, and a contribution is provided in this study to emphasize the use of placenta histology in practice. Fifty-one placentas from 11 litters were collected during cesarean section, classified according to the litter size (large (L) or small (S)) and the outcome, this latter as healthy (Group 1) or dead within 7 days (Group 2). The placenta/puppy weight ratio (PPR) was calculated, and specimens were formalin-fixed and paraffin-wax embedded, and on the resulting histological slides, capillary density (CD) was quantified. Among necrosis, calcification, and intravascular leucocytes, only the presence of multifocal-confluent necrosis (significantly more frequent in Group 2) was associated with a higher risk of death within 7 days (odds ratio = 30.7). Mixed logistic regression ruled out the effect on death both of a bitch and cesarean type (programmed vs. emergency). PPR and CD values were associated with litter size; large litters had lower PPR (p < 0.01) and higher CD (p < 0.05) than small litters. The relationship between PPR and CD was negative and significant (p < 0.01). Necrosis was a frequent finding in canine placentas, but only when multifocal-confluent was it associated with a poor outcome. The litter size influenced PPR (lower in L) and CD (higher in L), and this is likely due to the plasticity of placenta adaptation.
Despite the increasing demand of cellular therapies for dogs, little is known on the differences between adult and fetal adnexa canine mesenchymal stem cells (MSCs), and data on their metabolic features are lacking. The present study aimed at comparing the characteristics of canine adipose tissue (AT) and umbilical cord matrix (UC) MSCs. Moreover, for the first time in the dog, the cellular bioenergetics were investigated by evaluating the two main metabolic pathways (oxidative phosphorylation and glycolysis) of ATP production. Frozen-thawed samples were used for this study. No differences in mean cell proliferation were found (P>0.05). However, while AT-MSCs showed a progressive increase in doubling time over passages, UC-MSCs showed an initial post freezing-thawing latency. No differences in migration, spheroid formation ability, and differentiation potential were found (P>0.05). RT-PCR analysis confirmed the expression of CD90 and CD44, the lack of CD14 and weak expression of CD34, mostly by AT-MSCs. DLA-DRA1 and DLA-DQA1 were weakly expressed only at passage 0 by UC-MSCs, while they were expressed at different passages for AT-MSCs. There was no difference (P>0.05) in total ATP production between cell cultures, but the ratio between the “mitochondrial ATP Production Rate” and the “glycolytic ATP Production Rate” was higher (P<0.05) in AT- than in UC-MSCs. However, in both MSCs types the mitochondrial respiration was the main pathway of ATP production. Mitochondrial respiration and ATP turnover in UC-MSCs were higher (P<0.05) than in AT-MSCs, but both had a 100% coupling efficiency. These features and the possibility of increasing the oxygen consumption by a spare respiratory capacity of four (AT-MSCSs) and two (UC-MSCs) order of magnitude greater than basal respiration, can be taken as indicative of the cell propensity to differentiate. The findings may efficiently contribute to select the most appropriate MSCs, culture and experimental conditions for transplantation experiments in mesenchymal stem cell therapy for companion animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.