Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K+-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.
Adipose tissue is a dynamic endocrine organ with a central role in metabolism regulation. Functional differences in adipose tissue seem associated with the regional distribution of fat depots, in particular in subcutaneous and visceral omental pads. Here, we report for the first time the isolation of human adipose-derived adult stem cells from visceral omental and subcutaneous fat (V-ASCs and S-ASCs, respectively) from the same subject. Immunophenotyping shows that plastic culturing selects homogeneous cell populations of V-ASCs and S-ASCs from the corresponding stromal vascular fractions (SVFs), sharing typical markers of mesenchymal stem cells. Electron microscopy and electrophysiological and real-time RT-PCR analyses confirm the mesenchymal stem nature of both V-ASCs and S-ASCs, while no significant differences in a limited pattern of cytokine/chemokine expression can be detected. Similar to S-ASCs, V-ASCs can differentiate in vitro toward adipogenic, osteogenic, chondrogenic, muscular, and neuronal lineages, as demonstrated by histochemical, immunofluorescence, real-time RT-PCR, and electrophysiological analyses, suggesting the multipotency of such adult stem cells. Our data demonstrate that both visceral and subcutaneous adipose tissues are a source of pluripotent stem cells with multigermline potential. However, the visceral rather than the subcutaneous ASC could represent a more appropriate in vitro cell model for investigating the molecular mechanisms implicated in the pathophysiology of metabolic disorders such as obesity.
We identified a novel Src isoform in human spermatozoa, which appears to be involved in regulating sperm capacitation, calcium fluxes, tyrosine phosphorylation and acrosome reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.