In this paper we study optimal control problems in Wasserstein spaces, which are suitable to describe macroscopic dynamics of multi-particle systems. The dynamics is described by a parametrized continuity equation, in which the Eulerian velocity field is affine w.r.t. some variables. Our aim is to minimize a cost functional which includes a control norm, thus enforcing a control sparsity constraint. More precisely, we consider a nonlocal restriction on the total amount of control that can be used depending on the overall state of the evolving mass. We treat in details two main cases: an instantaneous constraint on the control applied to the evolving mass and a cumulative constraint, which depends also on the amount of control used in previous times. For both constraints, we prove the existence of optimal trajectories for general cost functions and that the value function is viscosity solution of a suitable Hamilton-Jacobi-Bellmann equation. Finally, we discuss an abstract Dynamic Programming Principle, providing further applications in the Appendix.
Measure Differential Equations (MDE) describe the evolution of probability measures driven by probability velocity fields, i.e. probability measures on the tangent bundle. They are, on one side, a measure-theoretic generalization of ordinary differential equations; on the other side, they allow to describe concentration and diffusion phenomena typical of kinetic equations. In this paper, we analyze some properties of this class of differential equations, especially highlighting their link with nonlocal continuity equations. We prove a representation result in the spirit of the Superposition Principle by Ambrosio-Gigli-Savaré, and we provide alternative schemes converging to a solution of the MDE, with a particular view to uniqueness/non-uniqueness phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.