In this paper we formulate a theory of measure-valued linear transport
equations on networks. The building block of our approach is the
initial/boundary-value problem for the measure-valued linear transport equation
on a bounded interval, which is the prototype of an arc of the network. For
this problem we give an explicit representation formula of the solution, which
also considers the total mass flowing out of the interval. Then we construct
the global solution on the network by gluing all the measure-valued solutions
on the arcs by means of appropriate distribution rules at the vertexes. The
measure-valued approach makes our framework suitable to deal with multiscale
flows on networks, with the microscopic and macroscopic phases represented by
Lebesgue-singular and Lebesgue-absolutely continuous measures, respectively, in
time and space
Aiming to describe traffic flow on road networks with long-range driver interactions, we study a nonlinear transport equation defined on an oriented network where the velocity field depends not only on the state variable but also on the distribution of the population. We prove existence, uniqueness and continuous dependence results of the solution intended in a suitable measure-theoretic sense. We also provide a representation formula in terms of the push-forward of the initial and boundary data along the network and discuss an explicit example of nonlocal velocity field fitting our framework.2010 Mathematics Subject Classification. 35R02, 35Q35, 28A50.
Measure Differential Equations (MDE) describe the evolution of probability measures driven by probability velocity fields, i.e. probability measures on the tangent bundle. They are, on one side, a measure-theoretic generalization of ordinary differential equations; on the other side, they allow to describe concentration and diffusion phenomena typical of kinetic equations. In this paper, we analyze some properties of this class of differential equations, especially highlighting their link with nonlocal continuity equations. We prove a representation result in the spirit of the Superposition Principle by Ambrosio-Gigli-Savaré, and we provide alternative schemes converging to a solution of the MDE, with a particular view to uniqueness/non-uniqueness phenomena.
In this paper, we develop a Mean Field Games approach to Cluster Analysis. We consider a finite mixture model, given by a convex combination of probability density functions, to describe the given data set. We interpret a data point as an agent of one of the populations represented by the components of the mixture model, and we introduce a corresponding optimal control problem. In this way, we obtain a multi-population Mean Field Games system which characterizes the parameters of the finite mixture model. Our method can be interpreted as a continuous version of the classical Expectation-Maximization algorithm.
In this paper, we investigate the numerical approximation of Hamilton-Jacobi equations with the Caputo time-fractional derivative. We introduce an explicit in time discretization of the Caputo derivative and a finite difference scheme for the approximation of the Hamiltonian. We show that the approximation scheme so obtained is stable under an appropriate CFL condition and converges to the unique viscosity solution of the Hamilton-Jacobi equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.