Background It is well known that the course of migraine is influenced by comorbidities and that individual psychological characteristics may impact on the disease. Proper identification of psychological factors that are relevant to migraine is important to improve non-pharmacological management. This study aimed at investigating the relationship between psychological factors and migraine in subjects free of psychiatric comorbidities. Methods A sample of women with episodic (EM) and chronic migraine (CM) without history of psychiatric comorbidities were included in this cross-sectional study. The study also included female healthy controls (HC) without migraine or other primary headaches. We evaluated sleep, anxiety, depression, intolerance of uncertainty, decision making style and tendence to pain catastrophizing by validated self-report questionnaires or scales. Comparisons among groups were performed using ANOVA and Bonferroni post-hoc tests. Statistical significance was set at p < 0.05. Results A total of 65 women with EM (mean age ± SD, 43.9 ± 7.2), 65 women with CM (47.7 ± 8.5), and 65 HC (43.5 ± 9.0) were evaluated. In sleep domains, CM patients reported poorer overall sleep quality, more severe sleep disturbances, greater sleep medication use, higher daytime dysfunction, and more severe insomnia symptoms than HC. EM group showed better sleep quality, lower sleep disturbances and sleep medication use than CM. On the other hand, the analysis highlighted more severe daytime dysfunction and insomnia symptoms in EM patients compared to HC. In anxiety and mood domains, CM showed greater trait anxiety and a higher level of general anxiety sensitivity than HC. Specifically, CM participants were more afraid of somatic and cognitive anxiety symptoms than HC. No difference in depression severity emerged. Finally, CM reported a higher pain catastrophizing tendency, more severe feeling of helplessness, and more substantial ruminative thinking than EM and HC, whilst EM participants reported higher scores in the three above-mentioned dimensions than HC. The three groups showed similar decision-making styles, intolerance of uncertainty, and strategies for coping with uncertainty. Conclusions Even in individuals without psychiatric comorbidities, specific behavioral and psychological factors are associated with migraine, especially in its chronic form. Proper identification of those factors is important to improve management of migraine through non-pharmacological strategies.
The psychopathological profile of patients with medication overuse headache (MOH) appears to be particularly complex. To better define it, we evaluated their performance on a targeted psychological profile assessment. We designed a case-control study comparing MOH patients and matched healthy controls (HC). Headache frequency, drug consumption, HIT-6, and MIDAS scores were recorded. All participants filled in the following questionnaires: Beck Depression Inventory-II Edition (BDI-2), trait subtest of State-Trait Anxiety Inventory (STAI-Y), Difficulties in Emotion Regulation Scale (DERS), Barratt Impulsiveness Scale (BIS-11), Toronto Alexithymia Scale (TAS-20). The primary endpoint was to establish if MOH patients have an altered psychopathological profile. The secondary endpoint was to establish whether the worst profile correlates with the worsening of headache and disability measures. We enrolled 48 consecutive MOH patients and 48 HC. MOH patients showed greater difficulty in recognition/regulation of emotions (DERS, TAS-20), depression (BDI-2), anxiety (STAI-Y), and impulsiveness (BIS-11). We found a positive correlation among DERS, BDI-2, STAI-Y, and BIS scores and MIDAS and HIT-6 scores and among DERS and headache frequency and drug consumption. MOH patients showed a high rate of emotion regulation difficulties, depression, and anxiety, which may negatively affect their headaches. The ability to regulate/recognize emotions may play a central role in sustaining medication overuse.
Sleep is a fundamental physiological process necessary for efficient cognitive functioning especially in relation to memory consolidation and executive functions, such as attentional and switching abilities. The lack of sleep strongly alters the connectivity of some resting-state networks, such as default mode network and attentional network. In this study, by means of magnetoencephalography (MEG) and specific cognitive tasks, we investigated how brain topology and cognitive functioning are affected by 24 h of sleep deprivation (SD). Thirty-two young men underwent resting-state MEG recording and evaluated in letter cancellation task (LCT) and task switching (TS) before and after SD. Results showed a worsening in the accuracy and speed of execution in the LCT and a reduction of reaction times in the TS, evidencing thus a worsening of attentional but not of switching abilities. Moreover, we observed that 24 h of SD induced large-scale rearrangements in the functional network. These findings evidence that 24 h of SD is able to alter brain connectivity and selectively affects cognitive domains which are under the control of different brain networks.
Background Transcranial direct current stimulation (tDCS) could counteract the pathophysiological triggers of migraine attacks by modulating cortical excitability. Several pilot randomized controlled trials (RCTs) assessed the efficacy of tDCS for migraine prevention. We reviewed and summarized the state of the art of tDCS protocols for migraine prevention, discussing study results according to the stimulations parameters and patients’ populations. Main body We combined the keywords ‘migraine’, ‘headache’, ‘transcranial direct current stimulation’, and ‘tDCS’ and searched Pubmed, Scopus, and Web of Science, from the beginning of indexing to June 22, 2021. We only included RCTs comparing the efficacy of active tDCS with sham tDCS to decrease migraine frequency, intensity, and/or acute drug utilization. The risk of bias of each RCT was assessed by using the RoB-2 tool (Cochrane Collaboration). Thirteen RCTs (from 2011 to 2021) were included in the review. The included patients ranged from 13 to 135. RCTs included patients with any migraine (n=3), chronic migraine (n=6), episodic migraine (n=3) or menstrual migraine (n=1). Six RCTs used cathodal and five anodal tDCS, while two RCTs compared the efficacy of both cathodal and anodal tDCS with that of sham. In most of the cathodal stimulation trials, the target areas were the occipital regions, with reference on central or supraorbital areas. In anodal RCTs, the anode was usually placed above the motor cortical areas and the cathode on supraorbital areas. All RCTs adopted repeated sessions (from 5 to 28) at variable intervals, while the follow-up length spanned from 1 day up to 12 months. Efficacy results were variable but overall positive. According to the RoB-2 tool, only four of the 13 RCTs had a low risk of bias, while the others presented some concerns. Conclusions Both anodal and cathodal tDCS are promising for migraine prevention. However, there is a need for larger and rigorous RCTs and standardized procedures. Additionally, the potential benefits and targeted neurostimulation protocols should be assessed for specific subgroups of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.