Background Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. Methods Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons’ correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. Results We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. Conclusions These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.
The metabolic perturbation caused by calorie restriction enhances muscle repair by playing a critical role in regulating satellite cell availability and activity in the muscles of young and old mice. To clarify the underlying mechanisms we asked whether myoblast replication and differentiation are affected by metformin, a calorie restriction-mimicking drug. C2C12, a mouse myoblast cell line, readily differentiate in vitro and fuse to form myotubes. However, when incubated with metformin, C2C12 slow their replication and do not differentiate. Interestingly, lower doses of metformin promote myogenic differentiation. We observe that metformin treatment modulates the expression of cyclins and cyclin inhibitors thereby inducing a cell cycle perturbation that causes a delay in the G2/M transition. The effect of metformin treatment is reversible since after drug withdrawal, myoblasts can re-enter the cell cycle and/or differentiate, depending on culture conditions. Myoblasts cultured under metformin treatment fail to up-regulate MyoD and p21cip1, a key step in cell cycle exit and terminal differentiation. Although the details of the molecular mechanisms underlying the effect of the drug on myoblasts still need to be clarified, we propose that metformin negatively affects myogenic differentiation by inhibiting irreversible exit from the cell cycle through reduction of MyoD and p21cip1 levels.
Wound healing is a complex process orchestrated by a variety of known and unknown factors, divided into four stages (haemostasis, inflammation, proliferation and remodelling) that occur in both skin and oral tissues (Hämmerle & Giannobile, 2014). However, oral tissues present special features as rapid wound closure and reduced scar formation (
Coronavirus disease 2019 (COVID-19), the pandemic infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents with an extremely heterogeneous spectrum of symptoms and signs. The clinical manifestations seem to be correlated with disease severity. COVID-19 susceptibility and mortality show a significant sex imbalance, with men being more prone to infection and showing a higher rate of hospitalization and mortality compared to women. Such variability can be ascribed to both sex-related biological factors and gender-related behavioral cues. This review will discuss the potential mechanisms accounting for sex/gender influence in vulnerability to COVID-19. Cardiovascular diseases play a central role in determining COVID-19 outcome, whether they are pre-existent or arose upon infection. We will pay particular attention to the impact of sex and gender on cardiovascular manifestations related to COVID-19. Finally, we will discuss the sex-dependent variability in some biomarkers for the evaluation of COVID-19 infection and prognosis. The aim of this work is to highlight the significance of gendered medicine in setting up personalized programs for COVID-19 prevention, clinical evaluation and treatment.
Chlorhexidine digluconate (CHX) is considered the gold standard for oral cavity antiseptic treatment. Nevertheless, several in vitro studies have reported detrimental effects in oral tissue repair. The aim of the present study was to evaluate the in vivo effect of post-surgical CHX mouth rinse on gingival tissue (G) 24 h after injury. G biopsies were obtained in three patients 24 h after surgery with the indication of post-surgical 0.12% CHX use and were compared with those obtained from the same patients without any antiseptic use. Changes in collagen production, cell proliferation, and apoptosis were examined by histological and Ki-67/P53 immunohistochemical analysis. Fibrotic markers (COL1A1, αSMA), proapoptotic protein (BAX) expression, and wound healing-related gene modulation (RAC1, SERPINE1, TIMP1) were analyzed by quantitative real-time PCR analysis. CHX was able to reduce cellular proliferation and increase collagen deposition, proapoptotic molecule and fibrotic marker expression, and myofibroblast differentiation, reduce expression of RAC1 and trigger expression of SERPINE1 and TIMP1, showing “scar wound healing response” pattern. This study assessed for the first time the in vivo effects of CHX on gingival tissue. The demonstration of a CHX-induced fibrotic transformation, leading to scar repair, supports the need for new post-surgical clinical protocols based on a strategic and personalized use of CHX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.