The hypervariable region 1 (HVR1) of the putative envelope protein E2 of hepatitis C virus (HCV) is the most variable antigenic fragment in the whole viral genome and is mainly responsible for the large interand intra-individual heterogeneity of the infecting virus. It contains a principal neutralization epitope and has been proposed as the major player in the mechanism of escape from host immune response. Since anti-HVR1 antibodies are the only species shown to possess protective activity up to date, developing an effective prevention therapy is a very difficult task. We have approached the problem of HVR1 variability by deriving a consensus profile from Ͼ200 HVR1 sequences from different viral isolates and used it as a template to generate a vast repertoire of synthetic HVR1 surrogates displayed on M13 bacteriophage. This library was affinity selected using many different sera from infected patients. Phages were identified which react very frequently with patients' sera and bind serum antibodies that cross-react with a large panel of HVR1 peptides derived from natural HCV variants. When injected into experimental animals, the 'mimotopes' with the highest cross-reactivity induced antibodies which recognized the same panel of natural HVR1 variants. In these mimotopes we identified a sequence pattern responsible for the observed crossreactivity. These data may hold the key for future development of a prophylactic vaccine against HCV.
The hypervariable region 1 (HVR1) of the putative envelope 2 protein of the hepatitis C virus (HCV) is the most variable part of the whole HCV polyprotein. Anti-HVR1 antibodies have been shown to protect against HCV infection, indicating that this region contains an important neutralization determinant. Recently we and others have demonstrated that HVR1 is also a T cell determinant able to activate helper T cell responses during HCV infection. In order to investigate the role of the immune response against HVR1 during HCV infection we have evaluated the humoral and lymphoproliferative responses to a panel of HVR1 peptides in HCV-infected patients with different outcomes of the disease following interferon-alpha (IFN-alpha) treatment. We observed that the frequency of anti-HVR1 T cell responses was significantly higher in patients who recovered after IFN-alpha therapy than in those who did not, while no differences in the anti-HVR1 antibody reactivities were detected. In addition, by generating HVR1-specific T cell lines and clones we identified human leukocyte-associated antigens DR4 restricted T cell epitopes in the carboxy-terminus of HVR1 and we demonstrated that broadly cross-reactive HVR1 T cells are elicited by HVR1.
Hepatitis C Virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma, worldwide, and the development of an effective vaccine represents a high priority goal. The Hyper Variable Region 1 (HVR1) of the second Envelope protein (E2) of HCV contains a principal neutralizing determinant, but it is highly variable among different isolates and it is involved in the escape from host immune response. Thus, to be effective, a vaccine should elicit a cross-reacting humoral response against the majority of viral variants. We show that it is possible to achieve a broadly cross-reactive immune response in rabbits by immunization with mimotopes of the HVR1. selected from a specialized phage library using HCV patients' sera. At least some of the cross-reacting anti-mimotope antibodies, elicited in rabbits, recognize discontinuous epitopes in a manner similar to those induced by the virus in infected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.