BackgroundPrevious studies have reported an association between weight increase and excess lung function decline in young adults followed for short periods. We aimed to estimate lung function trajectories during adulthood from 20-year weight change profiles using data from the population-based European Community Respiratory Health Survey (ECRHS).MethodsWe included 3673 participants recruited at age 20–44 years with repeated measurements of weight and lung function (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1)) in three study waves (1991–93, 1999–2003, 2010–14) until they were 39–67 years of age. We classified subjects into weight change profiles according to baseline body mass index (BMI) categories and weight change over 20 years. We estimated trajectories of lung function over time as a function of weight change profiles using population-averaged generalised estimating equations.ResultsIn individuals with normal BMI, overweight and obesity at baseline, moderate (0.25–1 kg/year) and high weight gain (>1 kg/year) during follow-up were associated with accelerated FVC and FEV1 declines. Compared with participants with baseline normal BMI and stable weight (±0.25 kg/year), obese individuals with high weight gain during follow-up had −1011 mL (95% CI −1.259 to −763) lower estimated FVC at 65 years despite similar estimated FVC levels at 25 years. Obese individuals at baseline who lost weight (<−0.25 kg/year) exhibited an attenuation of FVC and FEV1 declines. We found no association between weight change profiles and FEV1/FVC decline.ConclusionModerate and high weight gain over 20 years was associated with accelerated lung function decline, while weight loss was related to its attenuation. Control of weight gain is important for maintaining good lung function in adult life.
Rationale: Few longitudinal studies have assessed the relationship between occupational exposures and lung-function decline in the general population with a sufficiently long follow-up.Objectives: To examine the potential association in two large cohorts: the ECRHS (European Community Respiratory Health Survey) and the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults). Methods: General-population samples of individuals aged 18 to 62 were randomly selected in 1991-1993 and followed up approximately 10 and 20 years later. Spirometry (without bronchodilation) was performed at each visit. Coded complete job histories during follow-up visits were linked to a job-exposure matrix, generating cumulative exposure estimates for 12 occupational exposures. Forced expiratory volume in 1 second (FEV 1 ) and forced vital capacity (FVC) were jointly modeled in linear mixed-effects models, fitted in a Bayesian framework, taking into account age and smoking.Results: A total of 40,024 lung-function measurements from 17,833 study participants were analyzed. We found accelerated declines in FEV 1 and the FEV 1 /FVC ratio for exposure to biological dust, mineral dust, and metals (FEV 1 = 215.1 ml, 214.4 ml, and 218.7 ml, respectively; and FEV 1 /FVC ratio = 20.52%, 20.43%, and 20.36%, respectively; per 25 intensity-years of exposure). These declines were comparable in magnitude with those associated with long-term smoking. No effect modification by sex or smoking status was identified. Findings were similar between the ECRHS and the SAPALDIA cohorts.Conclusions: Our results greatly strengthen the evidence base implicating occupation, independent of smoking, as a risk factor for lung-function decline. This highlights the need to prevent or control these exposures in the workplace.
Paediatric Asthma contributes in paediatric global burden of diseases, as the most common chronic disease in children. Children are exposed to many environmental risk-factors, able to determine or worsen respiratory diseases, and contributing to asthma and asthma-like symptoms increases, especially in metropolitan areas. In urban settings, surrounding vegetation (greenness) may provide important benefits to health, including the promotion of physical activity and the mitigation of air and noise pollution. The aim of this study was to investigate the association between greenness and respiratory health. A total of 187 children (10–13 yrs old) were recruited in Turin, the north-western part of Italy. The prevalence of asthma and asthma-like symptoms was calculated from self-reported data collected by SIDRIA questionnaire. Spirometry test was performed to obtain respiratory flow measurements. Greenness was measured at individual level through the Normalised Difference Vegetation Index (NDVI) estimations from remote-sensing images. Higher exposure (3rd tertile vs. 1st tertile) to NDVI was associated to significantly lower ORs for asthma [0.13 CI 95% 0.02–0.7, p = 0.019], bronchitis [0.14 CI 95% 0.05–0.45, p = 0.001], and current wheezing [0.25 CI 95% 0.09–0.70, p = 0.008]. A significative positive association was found between greenness and FEF25–75, since children exposed to the 2nd tertile of NDVI reported a significantly decreased FEF25–75 compared to those in the 3rd tertile [B: −2.40; C.I.95%: −0.48–0.01; p = 0.049]. This cross-sectional study provided additional data on still inconsistent literature referring to respiratory health in children and green spaces, attesting a positive effect of greenness in a specific area of Italy. Further research is still needed.
Concerns exist that the positive association of physical activity with better lung function, which has been suggested in previous longitudinal studies in smokers, is due to reverse causation. To investigate this, we applied structural equation modeling (SEM), an exploratory approach, and marginal structural modeling (MSM), an approach from the causal inference framework that corrects for reverse causation and time-dependent confounding and estimates causal effects, on data from participants in the European Community Respiratory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.