We apply the transformation-optics approach to the design of a metamaterial radome that can extend the scanning angle of a phased-array antenna. For moderate enhancement of the scanning angle, via suitable parameterization and optimization of the coordinate transformation, we obtain a design that admits a technologically viable, robust and potentially broadband implementation in terms of thin-metallic-plate inclusions. Our results, validated via finite-element-based numerical simulations, indicate an alternative route to the design of metamaterial radomes which does not require negative-valued and/or extreme constitutive parameters.
This paper deals whit character properties of planar slabs by means of a fre microwave frequencies. The technique exploits and reflection measurements collected at diffe a bistatic configuration. Experimental data means of the global minimization of error fu for the difference between measurements an Slab dielectric constant and conductivity valu minimization procedure are discussed and co obtained by direct inspection of the reflection measured coefficients.
We present the experimental characterization of mantle cloaks designed so as to minimize the electromagnetic scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. Our experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as more quantitative assessments in terms of global scattering observables (e.g., total scattering width). Our results, in fairly good agreement with full-wave numerical simulations, provide a further illustration of the mantle- cloak mechanism, including its frequency-sensitivity, and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.