Objective: To validate new mitochondrial myopathy serum biomarkers for diagnostic use. Methods:We analyzed serum FGF21 (S-FGF21) and GDF15 from patients with (1) mitochondrial diseases and (2) nonmitochondrial disorders partially overlapping with mitochondrial disorder phenotypes. We (3) did a meta-analysis of S-FGF21 in mitochondrial disease and (4) analyzed S-Fgf21 and skeletal muscle Fgf21 expression in 6 mouse models with different musclemanifesting mitochondrial dysfunctions.Results: We report that S-FGF21 consistently increases in primary mitochondrial myopathy, especially in patients with mitochondrial translation defects or mitochondrial DNA (mtDNA) deletions (675 and 347 pg/mL, respectively; controls: 66 pg/mL, p , 0.0001 for both). This is corroborated in mice (mtDNA deletions 1,163 vs 379 pg/mL, p , 0.0001). However, patients and mice with structural respiratory chain subunit or assembly factor defects showed low induction (human 335 pg/mL, p , 0.05; mice 335 pg/mL, not significant). Overall specificities of FGF21 and GDF15 to find patients with mitochondrial myopathy were 89.3% vs 86.4%, and sensitivities 67.3% and 76.0%, respectively. However, GDF15 was increased also in a wide range of nonmitochondrial conditions.Conclusions: S-FGF21 is a specific biomarker for muscle-manifesting defects of mitochondrial translation, including mitochondrial transfer-RNA mutations and primary and secondary mtDNA deletions, the most common causes of mitochondrial disease. However, normal S-FGF21 does not exclude structural respiratory chain complex or assembly factor defects, important to acknowledge in diagnostics. Classification of evidence:This study provides Class III evidence that elevated S-FGF21 accurately distinguishes patients with mitochondrial myopathies from patients with other conditions, and FGF21 and GDF15 mitochondrial myopathy from other myopathies. Neurology ® 2016;87:2290-2299 GLOSSARY ALS 5 amyotrophic lateral sclerosis; CI 5 confidence interval; CK 5 creatine kinase; FGF21 5 fibroblast growth factor 21; GDF15 5 growth and differentiation factor 15; mCRC 5 metastasized colorectal cancer; MM 5 mitochondrial myopathy; mtDNA 5 mitochondrial DNA; PBC 5 primary biliary cirrhosis; PSC 5 primary sclerosing cholangitis; RC 5 respiratory chain; S-FGF21 5 serum FGF21; tRNA 5 transfer RNA.Mitochondrial diseases are the most common form of inherited metabolic disorders. The high variability in clinical manifestation, heterogeneity of genetic causes with .150 known disease genes, 1 and scarcity of sensitive and specific biomarkers make their diagnosis challenging. Our original multicenter analysis identified fibroblast growth factor 21 (FGF21) induction in *These authors contributed equally to this work.
The present study was aimed to evaluate the effect of plant proteins (lupin protein or pea protein) and their combinations with soluble fibres (oat fibre or apple pectin) on plasma total and LDL-cholesterol levels. A randomised, double-blind, parallel group design was followed: after a 4-week run-in period, participants were randomised into seven treatment groups, each consisting of twenty-five participants. Each group consumed two bars containing specific protein/fibre combinations: the reference group consumed casein þ cellulose; the second and third groups consumed bars containing lupin or pea proteins þ cellulose; the fourth and fifth groups consumed bars containing casein and oat fibre or apple pectin; the sixth group and seventh group received bars containing combinations of pea protein and oat fibre or apple pectin, respectively. Bars containing lupin protein þ cellulose (2 116 mg/l, 24·2 %), casein þ apple pectin (2 152 mg/l, 25·3 %), pea protein þ oat fibre (2 135 mg/l, 2 4·7 %) or pea protein þ apple pectin (2 168 mg/l, 2 6·4 %) resulted in significant reductions of total cholesterol levels (P, 0·05), whereas no cholesterol changes were observed in the subjects consuming the bars containing casein þ cellulose, casein þ oat fibre or pea protein þ cellulose. The present study shows the hypocholesterolaemic activity and potential clinical benefits of consuming lupin protein or combinations of pea protein and a soluble fibre, such as oat fibre or apple pectin.
Background Probiotics incorporated into dairy products have been shown to reduce total (TC) and LDL cholesterolemia (LDL-C) in subjects with moderate hypercholesterolemia. More specifically, probiotics with high biliary salt hydrolase activity, e.g. Bifidobacterium longum BB536, may decrease TC and LDL-C by lowering intestinal cholesterol reabsorption and, combined with other nutraceuticals, may be useful to manage hypercholesterolemia in subjects with low cardiovascular (CV) risk. This study was conducted to evaluate the efficacy and safety of a nutraceutical combination containing Bifidobacterium longum BB536, red yeast rice (RYR) extract (10 mg/day monacolin K), niacin, coenzyme Q10 (Lactoflorene Colesterolo®). The end-points were changes of lipid CV risk markers (LDL-C, TC, non-HDL-cholesterol (HDL-C), triglycerides (TG), apolipoprotein B (ApoB), HDL-C, apolipoprotein AI (ApoAI), lipoprotein(a) (Lp(a), proprotein convertase subtilisin/kexin type 9 (PCSK9)), and of markers of cholesterol synthesis/absorption. Methods A 12-week randomized, parallel, double-blind, placebo-controlled study. Thirty-three subjects (18–70 years) in primary CV prevention and low CV risk (SCORE: 0–1% in 24 and 2–4% in 9 subjects; LDL-C: 130–200 mg/dL) were randomly allocated to either nutraceutical ( N = 16) or placebo ( N = 17). Results Twelve-week treatment with the nutraceutical combination, compared to placebo, significantly reduced TC (− 16.7%), LDL-C (− 25.7%), non-HDL-C (− 24%) (all p < 0.0001), apoB (− 17%, p = 0.003). TG, HDL-C, apoAI, Lp(a), PCSK9 were unchanged. Lathosterol:TC ratio was significantly reduced by the nutraceutical combination, while campesterol:TC ratio and sitosterol:TC ratio did not change, suggesting reduction of synthesis without increased absorption of cholesterol. No adverse effects and a 97% compliance were observed. Conclusions A 12-week treatment with a nutraceutical combination containing the probiotic Bifidobacterium longum BB536 and RYR extract significantly improved the atherogenic lipid profile and was well tolerated by low CV risk subjects. Trial registration NCT02689934 . Electronic supplementary material The online version of this article (10.1186/s12937-019-0438-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.