Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K+-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.
Adipose tissue is a dynamic endocrine organ with a central role in metabolism regulation. Functional differences in adipose tissue seem associated with the regional distribution of fat depots, in particular in subcutaneous and visceral omental pads. Here, we report for the first time the isolation of human adipose-derived adult stem cells from visceral omental and subcutaneous fat (V-ASCs and S-ASCs, respectively) from the same subject. Immunophenotyping shows that plastic culturing selects homogeneous cell populations of V-ASCs and S-ASCs from the corresponding stromal vascular fractions (SVFs), sharing typical markers of mesenchymal stem cells. Electron microscopy and electrophysiological and real-time RT-PCR analyses confirm the mesenchymal stem nature of both V-ASCs and S-ASCs, while no significant differences in a limited pattern of cytokine/chemokine expression can be detected. Similar to S-ASCs, V-ASCs can differentiate in vitro toward adipogenic, osteogenic, chondrogenic, muscular, and neuronal lineages, as demonstrated by histochemical, immunofluorescence, real-time RT-PCR, and electrophysiological analyses, suggesting the multipotency of such adult stem cells. Our data demonstrate that both visceral and subcutaneous adipose tissues are a source of pluripotent stem cells with multigermline potential. However, the visceral rather than the subcutaneous ASC could represent a more appropriate in vitro cell model for investigating the molecular mechanisms implicated in the pathophysiology of metabolic disorders such as obesity.
Purpose: Cannabinoids have been recently proposed as a new family of potential antitumor agents. The present study was undertaken to investigate the expression of the two cannabinoid receptors, CB 1 and CB 2 , in colorectal cancer and to provide new insight into the molecular pathways underlying the apoptotic activity induced by their activation. Experimental Design: Cannabinoid receptor expression was investigated in both human cancer specimens and in the DLD-1 and HT29 colon cancer cell lines. The effects of the CB 1 agonist arachinodyl-2'-chloroethylamide and the CB 2 agonist N-cyclopentyl-7-methyl-1-(2-morpholin-4-ylethyl)-1,8-naphthyridin-4(1H)-on-3-carboxamide (CB13) on tumor cell apoptosis and ceramide and tumor necrosis factor (TNF)-a production were evaluated. The knockdown of TNF-a mRNA was obtained with the use of selective small interfering RNA. Results: We show that the CB 1 receptor was mainly expressed in human normal colonic epithelium whereas tumor tissue was strongly positive for the CB 2 receptor. The activation of the CB 1 and, more efficiently, of the CB 2 receptors induced apoptosis and increased ceramide levels in the DLD-1 and HT29 cells. Apoptosis was prevented by the pharmacologic inhibition of ceramide de novo synthesis. The CB 2 agonist CB13 also reduced the growth of DLD-1 cells in a mouse model of colon cancer. The knockdown of TNF-a mRNA abrogated the ceramide increase and, therefore, the apoptotic effect induced by cannabinoid receptor activation.Conclusions: The present study shows that either CB 1 or CB 2 receptor activation induces apoptosis through ceramide de novo synthesis in colon cancer cells. Our data unveiled, for the first time, thatTNF-a acts as a link between cannabinoid receptor activation and ceramide production.
Purpose: Activity of histidine decarboxylase, the key enzyme in the synthesis of histamine, has been shown to be increased in several types of human tumors.We attempted to establish whether the possible involvement of histidine decarboxylase and histamine in colorectal carcinogenesis might be mediated by the activation of the cyclooxygenase-2 (COX-2) pathway. Experimental Design: Expression/activity of histidine decarboxylase, histamine content, and prostaglandin E 2 (PGE 2 ) production were analyzed in 33 colorectal cancer samples and in the HT29, Caco-2, and HCT116 colon cancer cell lines. The effects of histamine, celecoxib, and H 1 , H 2 , and H 4 receptor antagonists on COX-2 expression/activity, cell proliferation, and vascular endothelial growth factor (VEGF) production were assessed in the three colon cancer lines that showed different constitutive COX-2 expression. Results: We showed the up-regulation of histidine decarboxylase protein expression and activity in the tumor specimens when compared with normal colonic mucosa. Histidine decarboxylase activity and histamine content were also significantly higher in metastatic tumors than in nonmetastatic ones.These variables significantly correlated with tumor PGE 2 production.The administration of histamine increased COX-2 expression/activity, cell proliferation, and VEGF production in the COX-2-positive HT29 and Caco-2 cells. Treatment with either H 2 /H 4 receptor antagonists or celecoxib prevented these effects. Histamine had no effect on both the COX-2 pathway andVEGF production in the COX-2-negative HCT116 cells. Conclusions: Our data showed that histamine exerts both a proproliferative and a proangiogenic effect via H 2 /H 4 receptor activation. These effects are likely to be mediated by increasing COX-2-related PGE 2 production in COX-2-expressing colon cancer cells.
Purpose: Up-regulation of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) enzymes has been reported in colorectal cancer. We aimed at evaluating the possible interaction between the nitric oxide and COX-2 pathways, and its effect on promoting tumor angiogenesis.Experimental Design: Expression of iNOS, COX-2, vascular endothelial growth factor (VEGF), and CD31 was analyzed in tumor samples and corresponding normal mucosa obtained from 46 surgical specimens. We also evaluated iNOS activity, prostaglandin E 2 (PGE 2 ), cyclic GMP and cyclic AMP production in the same specimens. Nitrite/nitrate levels, and PGE 2 and VEGF production were assessed in HCT116 and HT29 colon cancer cell lines after induction and selective inhibition of the two enzyme pathways.Results: A significant correlation was found between iNOS and COX-2 immunohistochemical expression. PGE 2 production significantly correlated with iNOS activity and cGMP levels. A significant correlation was also found among PGE 2 production, microvessel density, and VEGF expression. Coinduction of both iNOS and COX-2 activities occurred after lipopolysaccharide (LPS) and epidermal growth factor (EGF) treatment in HCT116 and HT29 cells. Inhibition of iNOS by 1400W significantly reduced both LPS-and EGF-induced PGE 2 production. Treatment with LPS, EGF, and arachidonic acid significantly increased VEGF production in the iNOS-negative/COX-2-positive HT29 cells. This effect was completely reversed by treatment with the selective COX-2 inhibitor celecoxib.Conclusions: Our data showed a prominent role of nitric oxide in stimulating COX-2 activity in colorectal cancer. This interaction is likely to produce a cooperative effect in promoting angiogenesis through PGE 2 -mediated increase in VEGF production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.