Recovery of upper and lower limbs function is essential to reach independence in daily activities in patients with upper motor neuron syndrome (UMNS). Rehabilitation can provide a guide for motor recovery influencing the neurobiology of neuronal plasticity providing controlled, repetitive, and variable patterns. Increasing therapy dosage, intensity, number of repetition, execution of task‐oriented exercises, and combining top‐down and bottom‐up approaches can promote plasticity and functional recovery. Robotic exoskeletons for upper and lower limbs, based on the principle of motor learning, have been introduced in neurorehabilitation. In this narrative review, we provide an overview of literature published on exoskeleton devices for upper and lower limb rehabilitation in patients with UMNS; we summarized the available current research evidence and outlined the new challenges that neurorehabilitation and bioengineering will have to face in the upcoming years. Robotic treatment should be considered a rehabilitation tool useful to generate a more complex, controlled multisensory stimulation of the patient and useful to modify the plasticity of neural connections through the experience of movement. Efficacy and efficiency of robotic treatment should be defined starting from intensity, complexity, and specificity of the robotic exercise, that are related to human‐robot interaction in terms of motion, emotion, motivation, meaning of the task, feedback from the exoskeleton, and fine motion assistance. Duration of a single session, global period of the treatment, and the timing for beginning of robotic treatment are still open questions. There is the need to evaluate and individualize the treatment according to patient's characteristics. Robotic devices for upper and lower limbs open a window to define therapeutic modalities as possible beneficial drug, able to boost biological, neurobiological, and epigenetic changes in central nervous system. We need to implement large and innovative research programs to answer these issues in the near future.
Background Robotic systems combined with Functional Electrical Stimulation (FES) showed promising results on upper-limb motor recovery after stroke, but adequately-sized randomized controlled trials (RCTs) are still missing. Objective To evaluate whether arm training supported by RETRAINER, a passive exoskeleton integrated with electromyograph-triggered functional electrical stimulation, is superior to advanced conventional therapy (ACT) of equal intensity in the recovery of arm functions, dexterity, strength, activities of daily living, and quality of life after stroke. Methods A single-blind RCT recruiting 72 patients was conducted. Patients, randomly allocated to 2 groups, were trained for 9 weeks, 3 times per week: the experimental group performed task-oriented exercises assisted by RETRAINER for 30 minutes plus ACT (60 minutes), whereas the control group performed only ACT (90 minutes). Patients were assessed before, soon after, and 1 month after the end of the intervention. Outcome measures were as follows: Action Research Arm Test (ARAT), Motricity Index, Motor Activity Log, Box and Blocks Test (BBT), Stroke Specific Quality of Life Scale (SSQoL), and Muscle Research Council. Results All outcomes but SSQoL significantly improved over time in both groups ( P < .001); a significant interaction effect in favor of the experimental group was found for ARAT and BBT. ARAT showed a between-group change of 11.5 points ( P = .010) at the end of the intervention, which increased to 13.6 points 1 month after. Patients considered RETRAINER moderately usable (System Usability Score of 61.5 ± 22.8). Conclusions Hybrid robotic systems, allowing to perform personalized, intensive, and task-oriented training, with an enriched sensory feedback, was superior to ACT in improving arm functions and dexterity after stroke.
The most commonly used scales evaluated the basic components of walking. Future studies should also include instrumental evaluation. Criteria for scale selection should be based on the ICF framework, psychometric properties and patient characteristics.
Background: Overground Robot-Assisted Gait Training (o-RAGT) provides intensive gait rehabilitation. This study investigated the efficacy of o-RAGT in subacute stroke subjects, compared to conventional gait training. Methods: A multicenter randomized controlled trial was conducted on 75 subacute stroke subjects (38 in the Experimental Group (EG) and 37 in the Control Group (CG)). Both groups received 15 sessions of gait training (5 sessions/week for 60 min) and daily conventional rehabilitation. The subjects were assessed at the beginning (T1) and end (T2) of the training period with the primary outcome of a 6 Minutes Walking Test (6MWT), the Modified Ashworth Scale of the Affected lower Limb (MAS-AL), the Motricity Index of the Affected lower Limb (MI-AL), the Trunk Control Test (TCT), Functional Ambulation Classification (FAC), a 10 Meters Walking Test (10MWT), the modified Barthel Index (mBI), and the Walking Handicap Scale (WHS). Results: The 6MWT increased in both groups, which was confirmed by both frequentist and Bayesian analyses. Similar outcomes were registered in the MI-AL, 10MWT, mBI, and MAS-AL. The FAC and WHS showed a significant number of subjects improving in functional and community ambulation in both groups at T2. Conclusions: The clinical effects of o-RAGT were similar to conventional gait training in subacute stroke subjects. The results obtained in this study are encouraging and suggest future clinical trials on the topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.