Skeletal muscle remodeling in response to various noxae physiologically includes structural changes and inflammatory events. The possibility to study those phenomena in-vivo has been hampered by the lack of validated imaging tools. In our study, we have relied on multiparametric magnetic resonance imaging for quantitative monitoring of muscle changes in mice experiencing age-related sarcopenia or active regeneration after sterile acute injury of tibialis anterior muscle induced by cardiotoxin (CTX) injection. The extent of myofibrils’ necrosis, leukocyte infiltration, and regeneration have been evaluated and compared with parameters from magnetic resonance imaging: T2-mapping (T2 relaxation time; T2-rt), diffusion-tensor imaging (fractional anisotropy, F.A.) and diffusion weighted imaging (apparent diffusion coefficient, ADC). Inflammatory leukocytes within the perimysium and heterogeneous size of fibers characterized aged muscles. They displayed significantly increased T2-rt (P<0.05) and F.A. (P<0.05) compared with young muscles. After acute damage T2-rt increased in otherwise healthy young muscles with a peak at day 3, followed by a progressive decrease to basal values. F.A. dropped 24 hours after injury and afterward increased above the basal level in the regenerated muscle (from day 7 to day 15) returning to the basal value at the end of the follow up period. The ADC displayed opposite kinetics. T2-rt positively correlated with the number of infiltrating leucocytes retrieved by immunomagnetic bead sorting from the tissue (r = 0.92) and with the damage/infiltration score (r = 0.88) while F.A. correlated with the extent of tissue regeneration evaluated at various time points after injury (r = 0.88). Our results indicate that multiparametric MRI is a sensitive and informative tool for monitoring inflammatory and structural muscle changes in living experimental animals; particularly, it allows identifying the increase of T2-rt and F.A. as common events reflecting inflammatory infiltration and muscle regeneration in the transient response of the tissue to acute injury and in the persistent adaptation to aging.
Background and objective Despite olfactory disorders being among the most common neurological complications of coronavirus disease 2019 (COVID-19), their pathogenesis has not been fully elucidated yet. Brain MR imaging is a consolidated method for evaluating olfactory system’s morphological modification, but a few quantitative studies have been published so far. The aim of the study was to provide MRI evidence of olfactory system alterations in patients with COVID-19 and neurological symptoms, including olfactory dysfunction. Methods 196 COVID-19 patients (median age: 53 years, 56% females) and 39 controls (median age 55 years, 49% females) were included in this cross-sectional observational study; 78 of the patients reported olfactory loss as the only neurological symptom. MRI processing was performed by ad-hoc semi-automatic processing procedures. Olfactory bulb (OB) volume was measured on T2-weighted MRI based on manual tracing and normalized to the brain volume. Olfactory tract (OT) median signal intensity was quantified on fluid attenuated inversion recovery (FLAIR) sequences, after preliminary intensity normalization. Results COVID-19 patients showed significantly lower left, right and total OB volumes than controls ( p < 0.05). Age-related OB atrophy was found in the control but not in the patient population. No significant difference was found between patients with olfactory disorders and other neurological symptoms. Several outliers with abnormally high OT FLAIR signal intensity were found in the patient group. Conclusions Brain MRI findings demonstrated OB damage in COVID-19 patients with neurological complications. Future longitudinal studies are needed to clarify the transient or permanent nature of OB atrophy in COVID-19 pathology. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00415-023-11561-0.
IntroductionAbdominal pain in PNH has never been investigated by in-vivo imaging studies. With MRI, we aimed to assess mesenteric vessels flow and small bowel wall perfusion to investigate the ischemic origin of abdominal pain.Materials and MethodsSix PNH patients with (AP) and six without (NOP) abdominal pain underwent MRI. In a blinded fashion, mean flow (MF, quantity of blood moving through a vessel within a second, in mL·s-1) and stroke volume (SV, volume of blood pumped out at each heart contraction, in mL) of Superior Mesenteric Vein (SMV) and Artery (SMA), areas under the curve at 60 (AUC60) and 90 seconds (AUC90) and Ktrans were assessed by two operators.ResultsMean total perfusion and flow parameters were lower in AP than in NOP group. AUC60: 84.81 ± 11.75 vs. 131.73 ± 18.89 (P < 0.001); AUC90: 102.33 ± 14.16 vs. 152.58 ± 22.70 (P < 0.001); Ktrans: 0.0346 min-1 ± 0.0019 vs. 0.0521 ± 0.0015 (P = 0.093 duodenum, 0.009 jejunum/ileum). SMV: MF 4.67 ml/s ± 0.85 vs. 8.32 ± 2.14 (P = 0.002); SV 3.85 ml ± 0.76 vs. 6.55 ± 1.57 (P = 0.02). SMA: MF 6.95 ± 2.61 vs. 11.2 ± 2.32 (P = 0.07); SV 6.52 ± 2.19 vs. 8.78 ± 1.63 (P = 0.07). We found a significant correlation between MF and SV of SMV and AUC60 (MF:ρ = 0.88, P < 0.001; SV: ρ = 0.644, P = 0.024), AUC90 (MF: ρ = 0.874, P < 0.001; SV:ρ = 0.774, P = 0.003) and Ktrans (MF:ρ = 0.734, P = 0.007; SV:ρ = 0.581, P = 0.047).ConclusionsPerfusion and flow MRI findings suggest that the impairment of small bowel blood supply is significantly associated with abdominal pain in PNH.
Neurological symptoms described in COVID-19 infected patients can also occur in a more inflammatory related setting as in case of posterior reversible encephalopathy syndrome (PRES) that can be associated with SARS-CoV2 infection due to the massive cytokine storm, damage to endothelium and vasogenic oedema. At brain imaging, quite symmetric bilateral focal or confluent vasogenic oedema with posterior parietal and occipital lobe involvement are found. In severe cases like in COVID-setting, PRES can be complicated by ischemia or haemorrhage: we then describe in the atlas two cases of classic and complicated COVID-related PRES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.