Modern problems of radiative aerothermodynamics of entering space vehicles are demonstrated and analyzed in the paper. New radiative gas dynamic problems concerned to coupling processes of non-equilibrium dissociation with radiation heat transfer in shock layers generated above large scale re-entry space vehicles returning from orbital and super orbital space mission are considered in the first part. Three-dimensional numerical simulation data on radiative aerothermodynamics of Martian entry probes Pathfinder, Exomars and Mars Science Laboratory (MSL) are presented and analyzed in the second part. It is shown that integral radiative heating of leeward surface of the entry probes exceeds corresponding convective heating. The third part is dedicated to consideration preliminary numerical simulation results on radiative gas dynamics of Galileo probes. At first, a review of the available results obtained during the mission preparation and post-flight analyses has been undertaken to select a computational matrix. This matrix has been selected by accounting for previous numerical efforts from the literature to crosscheck the results. Then, a model based on previous efforts has been set up for computing the flow-field around the probe at high altitude. Finally the test case matrix has been computed and crosschecked with existing numerical predictions performed. Some possibilities of innovative magneto-hydrodynamic (MHD) technologies being applied to solve problems of re-entry vehicles heat protection are discussed in the fourth part. All presented data demonstrate necessity of further development of the radiative aerothermodynamics based on state-tostate approaches.
Articles you may be interested inTrajectory optimization study of a lifting body re-entry vehicle for medium to intermediate range applications AIP Conf. Proc. 1493, 782 (2012); 10.1063/1.4765577 Model surface conductivity effect for the electromagnetic heat shield in re-entry flight Phys. Fluids 20, 127103 (2008); 10.1063/1.3054149 MHD waves in stratified and dissipative plasmas AIP Conf.Abstract: In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.