Progress has been made enabling expensive, high-end inertial measurement units (IMUs) to be used as tracking sensors. However, the cost of these IMUs is prohibitive to their widespread use, and hence the potential of low-cost IMUs is investigated in this study. A wearable low-cost sensing system consisting of IMUs and ultrasound sensors was developed. Core to this system is an extended Kalman filter (EKF), which provides both zero-velocity updates (ZUPTs) and Heuristic Drift Reduction (HDR). The IMU data was combined with ultrasound range measurements to improve accuracy. When a map of the environment was available, a particle filter was used to impose constraints on the possible user motions. The system was therefore composed of three subsystems: IMUs, ultrasound sensors, and a particle filter. A Vicon motion capture system was used to provide ground truth information, enabling validation of the sensing system. Using only the IMU, the system showed loop misclosure errors of 1% with a maximum error of 4–5% during walking. The addition of the ultrasound sensors resulted in a 15% reduction in the total accumulated error. Lastly, the particle filter was capable of providing noticeable corrections, which could keep the tracking error below 2% after the first few steps.
Neural networks are increasingly used for intrusion detection on industrial control systems (ICS). With neural networks being vulnerable to adversarial examples, attackers who wish to cause damage to an ICS can attempt to hide their attacks from detection by using adversarial example techniques. In this work we address the domain specific challenges of constructing such attacks against autoregressive based intrusion detection systems (IDS) in a ICS setting.We model an attacker that can compromise a subset of sensors in a ICS which has a LSTM based IDS. The attacker manipulates the data sent to the IDS, and seeks to hide the presence of real cyber-physical attacks occurring in the ICS.We evaluate our adversarial attack methodology on the Secure Water Treatment system when examining solely continuous data, and on data containing a mixture of discrete and continuous variables. In the continuous data domain our attack successfully hides the cyber-physical attacks requiring 2.87 out of 12 monitored sensors to be compromised on average. With both discrete and continuous data our attack required, on average, 3.74 out of 26 monitored sensors to be compromised.
Machine learning systems have had enormous success in a wide range of fields from computer vision, natural language processing, and anomaly detection. However, such systems are vulnerable to attackers who can cause deliberate misclassification by introducing small perturbations. With machine learning systems being proposed for cyber attack detection such attackers are cause for serious concern. Despite this the vast majority of adversarial machine learning security research is focused on the image domain. This work gives a brief overview of adversarial machine learning and machine learning used in cyber attack detection and suggests key differences between the traditional image domain of adversarial machine learning and the cyber domain. Finally we show an adversarial machine learning attack on an industrial control system. CCS CONCEPTS • Security and privacy → Network security; • Computing methodologies → Machine learning.
Monitoring systems are essential to understand and control the behaviour of systems and networks. Cyber-physical systems (CPS) are particularly delicate under that perspective since they involve real-time constraints and physical phenomena that are not usually considered in common IT solutions. Therefore, there is a need for publicly available monitoring tools able to contemplate these aspects. In this poster/demo, we present our initiative, called CPS-MT, towards a versatile, real-time CPS monitoring tool, with a particular focus on security research. We first present its architecture and main components, followed by a MiniCPS-based case study. We also describe a performance analysis and preliminary results. During the demo, we will discuss CPS-MT's capabilities and limitations for security applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.