Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.
Over the last years, Industrial Control Systems (ICS) have become increasingly exposed to a wide range of cyber-physical threats. Efficient models and techniques able to capture their complex structure and identify critical cyber-physical components are therefore essential. AND/OR graphs have proven very useful in this context as they are able to semantically grasp intricate logical interdependencies among ICS components. However, identifying critical nodes in AND/OR graphs is an NP-complete problem. In addition, ICS settings normally involve various cyber and physical security measures that simultaneously protect multiple ICS components in overlapping manners, which makes this problem even harder. In this paper, we present an extended security metric based on AND/OR hypergraphs which efficiently identifies the set of critical ICS components and security measures that should be compromised, with minimum cost (effort) for an attacker, in order to disrupt the operation of vital ICS assets. Our approach relies on MAX-SAT techniques, which we have incorporated in META4ICS, a Java-based security metric analyser for ICS. We also provide a thorough performance evaluation that shows the feasibility of our method. Finally, we illustrate our methodology through a case study in which we analyse the security posture of a realistic Water Transport Network (WTN).
In this paper, we describe an efficient methodology to guide investigators during network forensic analysis. To this end, we introduce the concept of core attack graph, a compact representation of the main routes an attacker can take towards specific network targets. Such compactness allows forensic investigators to focus their efforts on critical nodes that are more likely to be part of attack paths, thus reducing the overall number of nodes (devices, network privileges) that need to be examined. Nevertheless, core graphs also allow investigators to hierarchically explore the graph in order to retrieve different levels of summarised information. We have evaluated our approach over different network topologies varying parameters such as network size, density, and forensic evaluation threshold.Our results demonstrate that we can achieve the same level of accuracy provided by standard logical attack graphs while significantly reducing the exploration rate of the network.
Abstract. The autonomic paradigm has been introduced in order to cope with the growing complexity of management. In that context, autonomic networks and systems are in charge of their own configuration. However, the changes that are operated by these environments may generate vulnerable configurations. In the meantime, a strong standardization effort has been done for specifying the description of configuration vulnerabilities. We propose in this paper an approach for integrating these descriptions into the management plane of autonomic systems in order to ensure safe configurations. We describe the underlying architecture and a set of preliminary results based on the Cfengine configuration tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.