The typical activation of a fourth generation Ziegler-Natta catalyst TiCl4/MgCl2/phthalate with triethyl aluminum generates Ti(3+) centers that are investigated by multi-frequency continuous wave and pulse EPR methods. Two families of isolated, molecule-like Ti(3+) species have been identified. A comparison of the experimentally derived g tensors and (35,37)Cl hyperfine and nuclear-quadrupole tensors with DFT-computed values suggests that the dominant EPR-active Ti(3+) species is located on MgCl2(110) surfaces (or equivalent MgCl2 terminations with tetra-coordinated Mg). O2 reactivity tests show that a fraction of these Ti sites is chemically accessible, an important result in view of the search for the true catalyst active site in olefin polymerization.
A "flexible cluster" model approach to Ziegler− Natta catalysts for the production of isotactic polypropylene, allowing the use of realistically sized MgCl 2 monolayer clusters (up to 38 MgCl 2 units) without any constraints, was employed to investigate the formation of adducts between the MgCl 2 support and three industrially relevant internal donor classes, namely phthalates, succinates, and 1,3-dimethoxypropanes. The calculated adsorption modes and thermochemical data for adducts of single-donor molecules confirmed earlier literature trends only in part. Results for adducts with multiple donor molecules, in turn, did not confirm the indications of periodic models about steric repulsion between neighboring adsorbates hampering high degrees of surface coverage; as a matter of fact, such repulsions seem to be largely traceable to unnecessary constraints inherent in periodic calculations.
MgCl2 is a vital component of Ziegler-Natta catalysts for olefin polymerization. Here we:synthesized anhydrous MgCl2 using different drying protocols and exploited H-1 NMR to quantify the proton content. We report on our study of neat and ball-milled MgCl2 samples by means of Mg-25 and Cl-35 solid-state NMR. DFT calculations of the quadrupole tensor aid in analysis of the spectra. The results show that, due to the morphology of the neat particles, a preferred Orientation is induced which manifests itself in unusual powder line shapes. Ball Milling reduces particle size, which subsequently leads to a small distribution of quadrupole parameters for the bulk. Surface sites, highly relevant for catalysis, are not directly observed, due to their broad lines of low intensity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.