The hypothesis that pigs placed on diets with reduced indispensable amino acid (AA) content attempts to offset the reduction in the nutrient density with increased feed intake was tested. In the experiment, feeds with a high or a low AA content were administrated to pigs fed ad-libitum or restrictively according to a 2 × 2 factorial design. Ninety-six barrows were housed in 8 pens (12 pigs/pen) equipped with automatic feeders. Within pen, and from 47 body weight (BW) onwards, 6 pigs were fed ad libitum. The others pigs were allowed to consume, as a maximum, the feed amounts indicated by the breeding company feeding plane to optimize the feed efficiency. In early (86–118 kg BW) and late (118–145 kg BW) finishing, the pigs of 4 pens received feeds with high indispensable AA contents (8.1 and 7.5 g lysine/kg in the two periods, respectively). The other pigs received feeds with reduced indispensable AA contents (lysine, methionine, threonine and tryptophan) by 9 and 18% in early and late finishing, respectively. Body lipid and protein (Pr) retentions were estimated from BW and back-fat depth measures recorded at the beginning and the end of each period. Nitrogen excretion was estimated as actual intake minus estimated N-retention (Pr/6.25). Pigs were slaughtered at 144 kg BW. Restricted feeding decreased feed intake (-7%), daily gain (-5%), carcass weight (-2.6%) and back-fat depth (-8.0%) but increased gain:feed ratio (+2%). The AA restriction increased feed intake (+5.9%), carcass weight (+4.9%) and intramuscular fat (+17.6%), and reduced carcass weight variation (-36%), with no effects on the feed efficiency and the estimated Pr (142 g/d). N excreted was reduced by feed (-9%) and dietary AA (-15%) restrictions. Irrespectively of the feeding level, the pigs responded to a reduction of the dietary essential AA content by increasing their feed intake.
This study investigated the effect of the feeding behaviour on growth performance, and carcass and meat characteristics of 96 barrows fed ad libitum or restrictively with high or low amino acids (AA) diets according to a 2 × 2 factorial design. The feeding behaviour traits were measured with automated feeders. From 86 kg BW, half of the pigs were given feeds with high indispensable (AA) contents, while the other half received feeds with indispensable AA contents reduced by 9% in early finishing (86–118 kg BW) and by 18% in late finishing (118–145 kg BW). Body lipid and protein retentions were estimated from BW and backfat depth measures recorded at the beginning and end of each period. Pigs were slaughtered at 145 kg BW and carcass and meat quality data were recorded. Phenotypic correlations among feeding behaviours, growth performances, and carcass and meat traits were computed from all the data after adjustment for the effects of feeding treatments. As feeding rate was the behavioural trait most highly correlated with performance and carcass traits, the records of each pig were classified into feeding rate tertiles. Then, the data were statistically analysed using a mixed model, which included feed restriction (FR), AA reduction (AAR), the FR × AAR interaction and the feeding rate tertile as fixed factors, and pen as a random factor. Pigs eating faster (52.1 to 118.9 g/min) had significantly greater final body weights (16%), average daily weight gains (27%), estimated protein gains (22%), estimated lipid retention (46%), carcass weights (16%), weights of lean cuts (14%), weights of fat cuts (21%), proportions of fat in the carcass (14%), and 4% lower proportions of carcass lean cuts than pigs eating slowly (12.6 to 38.2 g/min). Manipulating the eating rate, through management or genetic strategies, could affect feed intake and subsequent growth performance, hence carcass quality, but have little influence on feed efficiency.
Increasing fatness and avoiding puberty are desirable in gilts intended for high-quality dry-cured ham production. A total of 48 Duroc x (Landrace x Large White) females of 26.5 ± 3.70 kg body weight (BW) were used to evaluate the impact of immunocastration and to find the optimum application time of the second dose for immunocastration on growth; sex hormones; reproductive tract development; and carcass, meat, and fat quality. Gilts were allocated to four experimental treatments (n = 12): control (entire gilts, EG) and immunocastrated gilts (IG), providing the second dose at 12, 9, or 7 weeks before slaughter (with approximately 60, 75, or 90 kg BW, respectively). Mean slaughter BW was 125 kg. Immunocastrated gilts had lighter reproductive tracts and greater fat thickness than EG. Fat from IG was more saturated and less polyunsaturated than that from EG. Numerically, gilts immunocastrated 9 and 12 weeks before slaughter presented higher fatness than those immunocastrated 7 weeks before slaughter. In conclusion, immunocastration is a good strategy to improve the fatness of gilts destined to dry-cured ham elaboration, with the optimum time for the second dose application seemingly between 9 and 12 weeks before slaughter.
Influence of mild feed restriction and mild reduction in dietary amino acid content on feeding behaviour of group-housed growing pigs.Applied Animal Behaviour Science
Italian dry-cured ham production requires pigs to be slaughtered at 160 ± 16 kg at 9 months of age (control, C). The study explored three alternatives, based on different feeding conditions: (1) allowing pigs to express their growth potential by letting them reach 160 ± 16 kg slaughter weight (SW) at younger slaughter age (SA) (younger Age, YA); (2) allowing pigs to express their growth potential by maximizing their SW at 9 months SA (greater weight, GW); (3) increasing the SA required to reach 160 ± 16 kg SW (older age, OA). Pigs (336 C21 Goland, 95 kg initial body weight) were slaughtered on average at 257, 230, 257, and 273 d SA and 172.7, 172.3, 192.9, and 169.3 SW kg for the four treatments, respectively. C pigs had an average daily gain (ADG) of 715 g/d and feed efficiency (FE) of 0.265 (gain to feed). Compared to C, YA pigs had higher ADG (+32%), FE (+7.5%), and better ham adiposity; GW pigs had higher carcass weight (+12%), ADG (+25%), trimmed ham weight (+10.9%), and better ham adiposity. OA treatment affected ADG (−16.4%), FE (−16.6%), and trimmed ham weight (−3.6%). YA and GW could be promising alternatives to C as they improved FE and ham quality traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.