Condensed tannins (CTs) account for up to 20% of the dry matter in forage legumes used as ruminant feeds. Beneficial animal responses to CTs have included improved growth, milk and wool production, fertility, and reduced methane emissions and ammonia volatilization from dung or urine. Most important is the ability of such forages to combat the effects of gastrointestinal parasitic nematodes. Inconsistent animal responses to CTs were initially attributed to concentration in the diet, but recent research has highlighted the importance of their molecular structures, as well as concentration, and also the composition of the diet containing the CTs. The importance of CT structural traits cannot be underestimated. Interdisciplinary research is the key to unraveling the relationships between CT traits and bioactivities and will enable future on‐farm exploitation of these natural plant compounds. Research is also needed to provide plant breeders with guidelines and screening tools to optimize CT traits, in both the forage and the whole diet. In addition, improvements are needed in the competitiveness and agronomic traits of CT‐containing legumes and our understanding of options for their inclusion in ruminant diets. Farmers need varieties that are competitive in mixed swards and have predictable bioactivities. This review covers recent results from multidisciplinary research on sainfoin (Onobrychis Mill. spp.) and provides an overview of current developments with several other tanniniferous forages. Tannin chemistry is now being linked with agronomy, plant breeding, animal nutrition, and parasitology. The past decade has yielded considerable progress but also generated more questions—an enviable consequence of new knowledge!
Forage legumes that contain secondary compounds are considered to be less susceptible to proteolysis than other legumes, with improved silage quality and possibly improved animal performance. This was investigated feeding five groups of growing lambs for 10 weeks, five silages composed of pure timothy (T; Phleum pratense), mixtures of T with red clover (Trifolium pratense; T‐RC, 50/50 on DM basis), sainfoin (Onobrychis viciifolia; T‐SF), or both (T‐RC‐SF, 50/25/25), or a mixture of the two legumes (RC‐SF). Including SF and/or RC in silages improved silage fermentation as shown by higher lactic acid and lower soluble N and NH3 contents than in T silage. Voluntary intakes were higher with all the RC‐containing silages than with T and T‐SF. The T‐SF silage had the lowest, and RC‐containing silages the highest average values for daily gain, feed conversion efficiency, live weight and carcass weight. The differing effects of these silages cannot be totally explained by differences in their nutritive value and so may be due to their bioactive compounds impacting differently on feeding motivation and digestive efficiency. These results suggest that including RC in silages is a promising strategy to combine improved animal performance with reduced environmental pressure.
Little information exists on the effects of ensiling on condensed tannins or proanthocyanidins. The acetone-butanol-HCl assay is suitable for measuring proanthocyanidin contents in a wide range of samples, silages included, but provides limited information on proanthocyanidin composition, which is of interest for deciphering the relationships between tannins and their bioactivities in terms of animal nutrition or health. Degradation with benzyl mercaptan (thiolysis) provides information on proanthocyanidin composition, but proanthocyanidins in several sainfoin silages have proved resistant to thiolysis. We now report that a pretreatment step with sodium hydroxide prior to thiolysis was needed to enable their analysis. This alkaline treatment increased their extractability from ensiled sainfoin and facilitated especially the release of larger proanthocyanidins. Ensiling reduced assayable proanthocyanidins by 29%, but the composition of the remaining proanthocyanidins in silage resembled that of the fresh plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.