We present the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential. We computed the two-loop QCD and Yukawa corrections to the relation between the Higgs quartic coupling (λ) and the Higgs mass (M h ), reducing the theoretical uncertainty in the determination of the critical value of M h for vacuum stability to 1 GeV. While λ at the Planck scale is remarkably close to zero, absolute stability of the Higgs potential is excluded at 98% C.L. for M h < 126 GeV. Possible consequences of the near vanishing of λ at the Planck scale, including speculations about the role of the Higgs field during inflation, are discussed.
We extract from data the parameters of the Higgs potential, the top Yukawa coupling and the electroweak gauge couplings with full 2-loop NNLO precision, and we extrapolate the SM parameters up to large energies with full 3-loop NNLO RGE precision. Then we study the phase diagram of the Standard Model in terms of high-energy parameters, finding that the measured Higgs mass roughly corresponds to the minimum values of the Higgs quartic and top Yukawa and the maximum value of the gauge couplings allowed by vacuum metastability. We discuss various theoretical interpretations of the near-criticality of the Higgs mass.
The status of the evaluation of the MSSM Higgs sector is reviewed. The phenomenological impact of recently obtained corrections is discussed. In particular it is shown that the upper bound on m h within the MSSM is shifted upwards. Consequently, lower limits on tan β obtained by confronting the upper bound as function of tan β with the lower bound on m h from Higgs searches are significantly weakened. Furthermore, the region in the M A -tan β-plane where the coupling of the lightest Higgs boson to down-type fermions is suppressed is modified. The presently not calculated higher-order corrections to the Higgs-boson mass matrix are estimated to shift the mass of the lightest Higgs boson by up to 3 GeV. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.