We provide a brief review and appraisal of recent and current virtual reality (VR) technology for Alzheimer’s disease (AD) applications. We categorize them according to their intended purpose (e.g., diagnosis, patient cognitive training, caregivers’ education, etc.), focus feature (e.g., spatial impairment, memory deficit, etc.), methodology employed (e.g., tasks, games, etc.), immersion level, and passive or active interaction. Critical assessment indicates that most of them do not yet take full advantage of virtual environments with high levels of immersion and interaction. Many still rely on conventional 2D graphic displays to create non-immersive or semi-immersive VR scenarios. Important improvements are needed to make VR a better and more versatile assessment and training tool for AD. The use of the latest display technologies available, such as emerging head-mounted displays and 3D smart TV technologies, together with realistic multi-sensorial interaction devices, and neuro-physiological feedback capacity, are some of the most beneficial improvements this mini-review suggests. Additionally, it would be desirable that such VR applications for AD be easily and affordably transferable to in-home and nursing home environments.
Our study demonstrates that decision support tools based on the integration of multiple-source data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabetes by enacting a successful implementation of the learning health care system cycle.
The present work presents the comparative assessment of four glucose prediction models for patients with type 1 diabetes mellitus (T1DM) using data from sensors monitoring blood glucose concentration. The four models are based on a feedforward neural network (FNN), a self-organizing map (SOM), a neuro-fuzzy network with wavelets as activation functions (WFNN), and a linear regression model (LRM), respectively. For the development and evaluation of the models, data from 10 patients with T1DM for a 6-day observation period have been used. The models' predictive performance is evaluated considering a 30-, 60- and 120-min prediction horizon, using both mathematical and clinical criteria. Furthermore, the addition of input data from sensors monitoring physical activity is considered and its effect on the models' predictive performance is investigated. The continuous glucose-error grid analysis indicates that the models' predictive performance benefits mainly in the hypoglycemic range when additional information related to physical activity is fed into the models. The obtained results demonstrate the superiority of SOM over FNN, WFNN, and LRM with SOM leading to better predictive performance in terms of both mathematical and clinical evaluation criteria.
Mobile health systems aiming to promote adherence may cost-effectively improve the self-management of chronic diseases like diabetes, enhancing the compliance to the medical prescription, encouraging and stimulating patients to adopt healthy life styles and promoting empowerment. This paper presents a strategy for m-health applications in diabetes self-management that is based on automatic generation of feedback messages. A feedback assistant, representing the core of architecture, delivers dynamic and automatically updated text messages set up on clinical guideline and patient's lifestyle. Based on this strategy, an m-health adherence system was designed, developed and tested in a small-scale exploratory study with T1DM and T2DM patients. The results indicate that the system could be feasible and well accepted and that its usage increased along with adherence to prescriptions during the 4 weeks of the study. A more extensive research is pending to corroborate these outcomes and to establish a clear benefit of the proposed solution.
The Strategic Implementation Plan of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) proposed six Action Groups. After almost three years of activity, many achievements have been obtained through commitments or collaborative work of the Action Groups. However, they have often worked in silos and, consequently, synergies between Action Groups have been proposed to strengthen the triple win of the EIP on AHA. The paper presents the methodology and current status of the Task Force on EIP on AHA synergies. Synergies are in line with the Action Groups' new Renovated Action Plan (2016-2018) to ensure that their future objectives are coherent and fully connected. The outcomes and impact of synergies are using the Monitoring and Assessment Framework for the EIP on AHA (MAFEIP). Eight proposals for synergies have been approved by the Task Force: Five cross-cutting synergies which can be used for all current and future synergies as they consider overarching domains (appropriate polypharmacy, citizen empowerment, teaching and coaching on AHA, deployment of synergies to EU regions, Responsible Research and Innovation), and three cross-cutting synergies focussing on current Action Group activities (falls, frailty, integrated care and chronic respiratory diseases).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.