In modern biomaterial design the generation of an environment mimicking some of the extracellular matrix features is envisaged to support molecular cross-talk between cells and scaffolds during tissue formation/remodeling. In bone substitutes chemical biomimesis has been particularly exploited; conversely, the relevance of pre-determined scaffold architecture for regenerated bone outputs is still unclear. Thus we aimed to demonstrate that a different organization of collagen fibers within newly formed bone under unloading conditions can be generated by differently architectured scaffolds. An ordered and confined geometry of hydroxyapatite foams concentrated collagen fibers within the pores, and triggered their self-assembly in a cholesteric-banded pattern, resulting in compact lamellar bone. Conversely, when progenitor cells were loaded onto nanofibrous collagen-based sponges, new collagen fibers were distributed in a nematic phase, resulting mostly in woven isotropic bone. Thus specific biomaterial design relevantly contributes to properly drive collagen fibers assembly to target bone regeneration.
Several strategies have been developed for the control of DNA translocation in nanopores and nanochannels. However, the possibility to reduce the molecule speed is still challenging for applications in the field of single molecule analysis, such as ultra-rapid sequencing. This paper demonstrates the possibility to alter the DNA translocation process through an elastomeric nanochannel device by dynamically changing its cross section. More in detail, nanochannel deformation is induced by a macroscopic mechanical compression of the polymeric device. This nanochannel squeezing allows slowing down the DNA molecule passage inside it. This simple and low cost method is based on the exploitation of the elastomeric nature of the device, can be coupled with different sensing techniques, is applicable in many research fields, such as DNA detection and manipulation, and is promising for further development in sequencing technology.
The possible use of nanopores for single DNA molecules biosensing has been demonstrated,
but much remains to do in order to develop advanced engineered devices with enhanced
stability, and controlled geometry and surface properties. Here we present morphological
and electrical characterization of solid state silicon nitride nanopores fabricated by focused
ion beam direct milling and chemically functionalized by probe oligonucleotides, with the
final aim of developing a versatile tool for biosensing and gene expression profiling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.