We consider the dispersion interaction between two ground-state hydrogen atoms, interacting with the quantum electromagnetic field in the vacuum state, in the presence of an external static electric field, both in the nonretarded and in the retarded Casimir-Polder regime. We show that the presence of the external field strongly modifies the dispersion interaction between the atoms, changing its space dependence. Moreover, we find that, for specific geometrical configurations of the two atoms with respect to the external field and/or the relative orientation of the fields acting on the two atoms, it is possible to change the character of the dispersion force, turning it from attractive to repulsive, and even make it vanishing. This new findings clearly show the possibility to control and tailor interatomic dispersion interactions through external actions. By a numerical estimate of the field-modified interaction, we show that at typical interatomic distances this can be obtained for reasonable values of the external fields, currently achieved in the laboratory. * Electronic address: giuseppe.fiscelli@unipa.it † Electronic address: lucia.rizzuto@unipa.it ‡ Electronic address: roberto.passante@unipa.it arXiv:1909.03517v1 [quant-ph]
We consider the energy transfer process between two identical atoms placed inside a perfectly conducting cylindrical waveguide. We first introduce a general analytical expression of the energy transfer amplitude in terms of the electromagnetic Green's tensor; we then evaluate it in the case of a cylindrical waveguide made of a perfect conductor, for which analytical expressions of the Green's tensor exist. We numerically analyse the energy transfer amplitude when the radius of the waveguide is such that the transition frequency of both atoms is below the lower cutoff frequency of the waveguide, so that the resonant photon exchange is strongly suppressed. We consider both cases of atomic dipoles parallel and orthogonal to the axis of the guide. In both cases, we find that the energy transfer is modified by the presence of the waveguide. In the near zone, that is when the atomic separation is smaller than the atomic transition wavelength, the change, with respect to the free-space case, is small for axial dipoles, while it is larger for radial dipoles; it grows when the intermediate region between near and far zone is approached. In the far zone, we find that the energy transfer amplitude is strongly suppressed by the waveguide, becoming virtually zero. A physical interpretation of these results is discussed. Finally, we discuss the resonance interaction energy and force between two identical correlated atoms in the waveguide, one excited and the other in the ground state, prepared in their symmetric or antisymmetric superposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.