Coffee capsules have become one of the most used methods to have a coffee in the last few years. In this work, coffee was prepared using a professional espresso coffee machine. We investigated the volatilome of four different polypropylene coffee capsule typologies (Biologico, Dolce, Deciso, Guatemala) with and without capsules in order to reveal the possible differences in the VOCs spectra. The volatilome of each one was singularly studied through an analysis by gas chromatography and mass spectrometry (GC–MS), checking the abundance of different VOCs in coffee extracted with and without a capsule protection and compared to its related sample. Furthermore, ANOVA and Tukey tests were applied to statistically identify and individuate the possible differences. As a result, it was found that coffee capsules, offer advantages of protecting coffee from oxidation or rancidity and, consequently extended shelf life as well as did not cause a reduction of volatile compounds intensity. Therefore, it is possible to conclude that the aroma of polypropylene coffee capsule extraction is not damaged compared to a traditional espresso.
Vinegar is a fermented product that is appreciated world-wide. It can be obtained from different kinds of matrices. Specifically, it is a solution of acetic acid produced by a two stage fermentation process. The first is an alcoholic fermentation, where the sugars are converted in ethanol and lower metabolites by the yeast action, generally Saccharomyces cerevisiae. This was performed through a technique that is expanding more and more, the so-called “pied de cuve”. The second step is an acetic fermentation where acetic acid bacteria (AAB) action causes the conversion of ethanol into acetic acid. Overall, the aim of this research is to follow wine vinegar production step by step through the volatiloma analysis by metal oxide semiconductor MOX sensors developed by Nano Sensor Systems S.r.l. This work is based on wine vinegar monitored from the grape must to the formed vinegar. The monitoring lasted 4 months and the analyses were carried out with a new generation of Electronic Nose (EN) engineered by Nano Sensor Systems S.r.l., called Small Sensor Systems Plus (S3+), equipped with an array of six gas MOX sensors with different sensing layers each. In particular, real-time monitoring made it possible to follow and to differentiate each step of the vinegar production. The principal component analysis (PCA) method was the statistical multivariate analysis utilized to process the dataset obtained from the sensors. A closer look to PCA graphs affirms how the sensors were able to cluster the production steps in a chronologically correct manner.
There are different methods to extract and brew coffee, therefore, coffee processing is an important factor and should be studied in detail. Herein, coffee was brewed by means of a new espresso professional coffee machine, using coffee powder or portioned coffee (capsule). Four different kinds of coffees (Biologico, Dolce, Deciso, Guatemala) were investigated with and without capsules and the goal was to classify the volatiloma of each one by Small Sensor System (S3). The response of the semiconductor metal oxide sensors (MOX) of S3 where recorded, for all 288 replicates and after normalization ∆R/R0 was extracted as a feature. PCA analysis was used to compare and differentiate the same kind of coffee sample with and without a capsule. It could be concluded that the coffee capsules affect the quality, changing on the flavor profile of espresso coffee when extracted different methods confirming the use of s3 device as a rapid and user-friendly tool in the food quality control chain.
The marmalade and jam market is growing worldwide, with the European countries being the main producers in this sector. The market has ancient origins and the production is aimed at conserving the surplus fruits during some period of the year. Nowadays, the automatic production processes are wide-ranging but start with high-quality raw materials and follow an appropriate cooking process to conserve the main features of the final product. On the other hand, cases of overcooking may occur which lead to the production of hydroxy-methyl-furfural and derivatives with consequent browning and poor organoleptic characteristics of the final product. This study aimed to use chemical oxide nanowire gas sensors device S3 coupled with optical techniques and recognizing algorithms to create a multi-actor platform able to control the production process of jams and marmalades with a fast response time, to assist the production process and avoid economical losses in the sector. PCA shows that this innovative technology can recognize changes in the volatile fingerprint, distinguishing when the positive and more natural organoleptic characteristics of the fruit are still present from the appearance of the organoleptic defects due to a faulty production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.