A fast adaptive memetic algorithm (FAMA) is proposed which is used to design the optimal control system for a permanent-magnet synchronous motor. The FAMA is a memetic algorithm with a dynamic parameter setting and two local searchers adaptively launched, either one by one or simultaneously, according to the necessities of the evolution. The FAMA has been tested for both offline and online optimization. The former is based on a simulation of the whole system--control system and plant--using a model obtained through identification tests. The online optimization is model free because each fitness evaluation consists of an experimental test on the real motor drive. The proposed algorithm has been compared with other optimization approaches, and a matching analysis has been carried out offline and online. Excellent results are obtained in terms of optimality, convergence, and algorithmic efficiency. Moreover, the FAMA has given very robust results in the presence of noise in the experimental system.
This paper proposes a period representation for modeling the multidrug HIV therapies and an Adaptive Multimeme Algorithm (AMmA) for designing the optimal therapy. The period representation offers benefits in terms of flexibility and reduction in dimensionality compared to the binary representation. The AMmA is a memetic algorithm which employs a list of three local searchers adaptively activated by an evolutionary framework. These local searchers, having different features according to the exploration logic and the pivot rule, have the role of exploring the decision space from different and complementary perspectives and, thus, assisting the standard evolutionary operators in the optimization process. Furthermore, the AMmA makes use of an adaptation which dynamically sets the algorithmic parameters in order to prevent stagnation and premature convergence. The numerical results demonstrate that the application of the proposed algorithm leads to very efficient medication schedules which quickly stimulate a strong immune response to HIV. The earlier termination of the medication schedule leads to lesser unpleasant side effects for the patient due to strong antiretroviral therapy. A numerical comparison shows that the AMmA is more efficient than three popular metaheuristics. Finally, a statistical test based on the calculation of the tolerance interval confirms the superiority of the AMmA compared to the other methods for the problem under study.
Permanent magnet machines with segmented stator cores are affected by additional harmonic components of the cogging torque which cannot be minimized by conventional methods adopted for one-piece stator machines. In this study, a novel approach is proposed to minimize the cogging torque of such machines. This approach is based on the design of multiple independent shapes of the tooth tips through a topological optimization. Theoretical studies define a design formula that allows to choose the number of independent shapes to be designed, based on the number of stator core segments. Moreover, a computationally-efficient heuristic approach based on genetic algorithms and artificial neural network-based surrogate models solves the topological optimization and finds the optimal tooth tips shapes. Simulation studies with the finite element method validates the design formula and the effectiveness of the proposed method in suppressing the additional harmonic components. Moreover, a comparison with a conventional heuristic approach based on a genetic algorithm directly coupled to finite element analysis assesses the superiority of the proposed approach. Finally, a sensitivity analysis on assembling and manufacturing tolerances proves the robustness of the proposed design method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.