In this study, milk-coagulation properties (MCP) were characterized in the Sarda sheep breed. Milk composition and MCP [rennet-coagulation time (RCT), curd-firming time [time to reach a curd firmness of 20mm (k20)], and curd firmness (a30), (a45), and (a60)] were obtained extending the lactodynamographic analysis from 30 to 60 min from a population of 1,121 ewes from 23 different farms. Managerial characteristics of farms and parity, individual daily milk yields and stage of lactation of ewes were recorded. Data were analyzed using a mixed-model procedure with fixed effects of days in milk, parity, daily milk yield, and flock size and the random effect of the flock/test day nested within flock size. Sampled farms were classified as small (<300 ewes) and medium (300 to 600 ewes), and these were kept by family operations, or as large (>600 ewes), often operated through hired workers. Daily milk yield was, on average, 1.58 ± 0.79 L/d and variability for this trait was very high. The average content of fat, protein, and casein was respectively 6.41, 5.39, and 4.20%. The class of flock size had a significant effect only on curd firmness, whereas days in milk affected RCT and k20. The flock test day, parity, and daily milk yield were important sources of variation for all MCP. The mean value of RCT (8.6 min) and the low occurrence of noncoagulating samples (0.44%) confirmed the excellent coagulation ability of sheep milk compared with cattle milk. A more rapid coagulation was observed in mid-lactating, primiparous, and high-yielding ewes. The k20 was usually reached in less than 2 min after gelation, with the most favorable values at mid lactation. The mean value of curd firmness 30 min after rennet addition (a30) was, on average, 50mm and decreased to 46 and 42 mm respectively after 45 (a45) and 60 min (a60). The decreasing value of curd-firmness traits was likely to be caused by curd syneresis and whey expulsion. The correlation between RCT and a30 was much lower than in dairy cows and about null for a45 and a60. This means that curd firmness in dairy ewes is almost independent of gelation time and this can provide specific information for this species. In conclusion, this study showed that milk from Sarda sheep is characterized by an earlier gelation, a faster increase in curd firmness with time, and greater curd firmness after 30 min compared with dairy cows. Furthermore, correlations between MCP in sheep are much lower than in bovines and some of the assumptions and interpretations related to cows cannot be applied to sheep.
Goat milk and cheese production is continuously increasing and milk composition and coagulation properties (MCP) are useful tools to predict cheesemaking aptitude. The present study was planned to investigate the extension of lactodynamographic analysis up to 60 min in goat milk, to measure the farm and individual factors, and to investigate differences among 6 goat breeds. Daily milk yield (dMY) was recorded and milk samples collected from 1,272 goats reared in 35 farms. Goats were of 6 different breeds: Saanen and Camosciata delle Alpi for the Alpine type, and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. Milk composition (fat, protein, lactose, pH; somatic cell score; logarithmic bacterial count) and MCP [rennet coagulation time (RCT, min), curd-firming time (k, min), curd firmness at 30, 45, and 60 min after rennet addition (a, a, and a, mm)] were recorded, and daily fat and protein yield (dFPY g/d) was calculated as the sum of fat and protein concentration multiplied by the dMY. Data were analyzed using different statistical models to measure the effects of farm, parity stage of lactation and breed; lastly, the direct and the indirect effect of breed were quantified by comparing the variance of breed from models with or without the inclusion of linear regression of fat, protein, lactose, pH, bacterial, somatic cell counts, and dMY. Orthogonal contrasts were performed to compare least squares means. Almost all traits exhibited high variability, with coefficients of variation between 32 (for RCT) and 63% (for a). The proportion of variance regarding dMY, dFPY, and milk composition due to the farm was moderate, whereas for MCP it was low, except for a, at 69%. Parity affected both yield and quality traits of milk, with least squares means of dMY and dFPY showing an increase and RCT and curd firmness traits a decrease from the first to the last parity class. All milk quality traits, excluding fat, were affected by the stage of lactation; RCT and k decreased rapidly and a was higher from the first to the last part of lactation. Alpine breeds showed the highest dMY and dFPY but Mediterranean the best percentage of protein, fat, and lactose and a shorter k and a greater a. Among the Mediterranean goats, Murciano-Granadina goats had the highest milk yield, fat, and protein contents, whereas Maltese, Sarda, and Sarda Primitiva were characterized by much more favorable technological properties in terms of k, a, and a. In conclusion, as both the farm and individual factors highly influenced milk composition and MCP traits, improvements of these traits should be based both on modifying management and individual goat factors. As expected, several differences were attributable to the breed effect, with the best milk production for the Alpines and milk quality and coagulation for the Mediterranean goats.
This study investigated the modeling of curd-firming (CF) over time (CF(t)) of sheep milk. Milk samples from 1,121 Sarda ewes from 23 flocks were analyzed for coagulation properties. Lactodynamographic analyses were conducted for up to 60 min, and 240 CF individual observations from each sample were recorded. Individual sample CFt equation parameters (RCT(eq), rennet coagulation time; CF(P), asymptotic potential value of curd firmness; k(CF), curd-firming instant rate constant; and k(SR), curd syneresis instant rate constant) were estimated, and the derived traits (CF(max), the point at which CF(t) attained its maximum level, and tmax, the time at which CF(max) was attained) were calculated. The incidence of noncoagulating milk samples was 0.4%. The iterative estimation procedure applied to the individual coagulation data showed a small number of not-converged samples (4.4%), which had late coagulation and an almost linear pattern of the ascending part of the CF(t) curve that caused a high value of CF(P), a low value of k(CF), and a high value of k(SR). Converged samples were classified on the basis of their CF(t) curves into no-k(SR) (18.0%), low-k(SR) (72.6%), and high-k(SR) (4.5%). A CF(t) that was growing continuously because of the lack of the syneresis process characterized the no-k(SR) samples. The high-k(SR) samples had a much larger CFP, a smaller k(CF), and an anticipation of tmax, whereas the low-k(SR) samples had a fast k(CF) and a slower k(SR). The part of the average CF(t) curves that showed an increase was similar among the 3 different syneretic groups, whereas the part that decreased was different because of the expulsion of whey from the curd. The traditional milk coagulation properties recorded within 30 min were not able to detect any appreciable differences among the 4 groups of coagulating samples, which could lead to a large underestimation of the maximum CF of all samples (if predicted by a30), with the exception of the no-k(SR) samples. Large individual variability was found and was likely caused by the effects of the dairy system, such as flock size (on CF(max), t(max), and % ewes with no-k(SR) milk), flock within flock size (representing 11 to 43% of total variance for % ewes with no-k(SR) milk and CF(max), respectively), days in milk (on all model parameters and CF(max)), parity (on RCT(eq), k(SR), and CF(max)), daily milk yield (on RCT(eq) and CF(max)), and position of the individual pendulum that significantly affected model parameters and derived traits. In conclusion, the results showed that the modeling of coagulation, curd-firming, and syneresis is a suitable tool to achieve a deeper interpretation of the coagulation and curd-firming processes of sheep milk and also to study curd syneresis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.