Following preliminary feasibility studies which started at Legnaro National Laboratories (LNL) in 2011, the Italian National Institute for Nuclear Physics (INFN) research activities are underway aiming at the alternative, accelerator-driven,Mo99/Tc99mproduction routes. One of the most promising approaches is to use100Mo-enriched (i.e., >99%) molybdenum metallic targets, bombarded with high-beam-current, high-energy proton cyclotrons. In order to get a comprehensive map of radionuclides expected, a detailed theoretical investigation has been carried out using the TALYS-TENDL 2012 excitation functions extended up to (p,6n), (p,p5n), and (p,2p4n) levels. A series of quality parameters have thus been calculated both at the end of beam (EOB) and at longer times. Results point out that accelerator-99Mo is of limited interest for a possible massive production because of the quite low specific activity with respect to reactor-99Mo. Accelerator-Tc99mquality parameters (i.e., radionuclidic purity (RNP), isotopic purity (IP), and specific activities) calculated are instead quite close to the generator-Tc. Calculations at 15, 20, and 25 MeV have thus been performed to assess the best operative irradiation condition forTc99mproduction while minimizing both the short-lived and long-lived Tc contaminant radionuclides. Although present in minimum quantities, Tc contaminants may indeed have an impact either on the pharmaceutical labeling procedures or on contributing to patient radiation dose during the diagnostic procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.