Background: Growing evidence shows that grape polyphenols can improve cardiovascular risk factors. Although there are clear data supporting a beneficial effect of grape supplementation on blood pressure and glucose metabolism, the effects of grape polyphenols on lipid metabolism are still controversial. Objective: We performed a meta-analysis of randomized controlled trials (RCTs) to assess the effect of grape products on lipid profile. Design: A systematic search was performed in the PubMed, Web of Science, Scopus, and EMBASE databases without any language or publication year restriction. The reference lists of all retrieved articles were manually reviewed. RCTs evaluating the impact of grape products/juice/extracts on lipid profile were included. Difference in total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), oxidized low-density lipoprotein cholesterol (oxLDL-C), apolipoprotein (apo) A, apo B before and after administration of grape products or placebo were expressed as mean differences (MD) with pertinent 95% confidence intervals (95% CI). The impact of clinical and demographic features on effect size was assessed by meta-regression. Results: The administration of grape products is associated with a significant improvement of lipid profile, as evidenced by changes in TC (MD: −7.6 mg/dL (−0.2 mmol/L); 95% CI: −10.8, −4.4; p < 0.001), HDL-C (MD: 1.4 mg/dL (0.04 mmol/L); 95% CI: 0.8, 1.9; p < 0.001, I2 = 74.7%, p < 0.001), LDL-C (−6.3 mg/dL (−0.16 mmol/L); 95% CI: −9.5, −3.0; p < 0.001), oxLDL-C (MD: −4.5 U/L; 95% CI: −7.5, −1.5; p = 0.003, I2 = 90.6%, p < 0.001), apo B (MD: −2.4 mg/dL (−0.05 µmol/L); 95% CI: −4.5, −0.3; p = 0.026), and TG (MD: −14.5 mg/dL (−0.16 mmol/L); 95% CI: −17.7, −11.2; p < 0.001) levels in subjects receiving grape products compared to placebo. With regard to the extent of the lipid-lowering effect, compared to baseline values, the highest reduction was reported for LDL-C (MD: −5.6 mg/dL (−0.14 mmol/L); 95% CI: −9.5, −1.7; p = 0.005) and for oxLDL-C (MD: −5.0 U/L; 95% CI: −8.8, −1.2; p = 0.010, I2 = 0%, p = 0.470). Conclusions: Grape polyphenols exert a favorable effect on lipid profile in humans by significantly reducing plasma levels of LDL-C and oxLDL-C.
Cardiovascular disease is the leading cause of death globally The past few decades have shown that especially low-and middle-income countries have undergone rapid industrialization, urbanization, economic development and market globalization. Although these developments led to many positive changes in health outcomes and increased life expectancies, they all also caused inappropriate dietary patterns, physical inactivity and obesity. Evidence shows that a large proportion of the cardiovascular disease burden can be explained by behavioural factors such as low physical activity, unhealthy diet and smoking. Controlling these risk factors from early ages is important for maintaining cardiovascular health. Even in patients with genetic susceptibility to cardiovascular disease, risk factor modification is beneficial. Despite the tremendous advances in the medical treatment of cardiovascular risk factors to reduce overall cardiovascular risk, the modern lifestyle which has led to
OBJECTIVE To compare the effect of an isocaloric multifactorial diet with a diet rich in monounsaturated fatty acids (MUFA) and similar macronutrient composition on pancreatic fat (PF) and postprandial insulin response in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS According to a randomized controlled parallel-group design, 39 individuals with T2D, 35–75 years old, in satisfactory blood glucose control, were assigned to an 8 week isocaloric intervention with a multifactorial diet rich in MUFA, polyunsaturated fatty acids, fiber, polyphenols, and vitamins (n = 18) or a MUFA-rich diet (n = 21). Before/after the intervention, PF content was measured by the proton-density fat fraction using a three-dimensional mDIXON MRI sequence, and plasma insulin and glucose concentrations were measured over a 4 h test meal with a similar composition as the assigned diet. RESULTS After 8 weeks, PF significantly decreased after the multifactorial diet (from 15.7 ± 6.5% to 14.1 ± 6.3%; P = 0.024), while it did not change after the MUFA diet (from 17.1 ± 10.1% to 18.6 ± 10.6%; P = 0.139) with a significant difference between diets (P = 0.014). Postprandial glucose response was similar in the two groups. Early postprandial insulin response (incremental postprandial areas under the curve [iAUC0–120]) significantly increased with the multifactorial diet (from 36,340 ± 34,954 to 44,138 ± 31,878 pmol/L/min; P = 0.037), while it did not change significantly in the MUFA diet (from 31,754 ± 18,446 to 26,976 ± 12,265 pmol/L/min; P = 0.178), with a significant difference between diets (P = 0.023). Changes in PF inversely correlated with changes in early postprandial insulin response (r = −0.383; P = 0.023). CONCLUSIONS In patients with T2D, an isocaloric multifactorial diet, including several beneficial dietary components, markedly reduced PF. This reduction was associated with an improved postprandial insulin response.
Adiponectin is an adipocyte-secreted hormone with insulinsensitizing, anti-atherogenic and anti-inflammatory properties acting as a crucial messenger in the crosstalk between adipose tissue and other organs, that is liver, pancreas and muscle. 1 As such, it plays a role in the pathogenesis of obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD) and their interrelationships. Fasting plasma levels of adiponectin are inversely related to T2D incidence, being a marker for diabetes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.