The presence of soiling on photovoltaic modules reduces light transmission through the front cover glass to the active absorber, thereby reducing efficiency and performance. Current soiling mitigation techniques are expensive and/or ineffective. However, anti-soiling coatings applied to the solar cover glass have the potential to reduce soiling for long periods of time without continuous maintenance. This paper reports the performance of two transparent hydrophobic coatings (A and B) exposed to the outdoor environment of coastal Denmark for 24 weeks. A comparison was made between the performance of coated and uncoated glass coupons, periodically cleaned coupons, and accelerated laboratory tests. Although initial results were promising, water contact angle and transmittance values were found to decline continuously for all coated and uncoated coupons. Surface blisters, film thickness reduction, changes in surface chemistry (fluorine loss), and abrasion damage following cleaning were observed. Coupons cleaned every 4 weeks showed a restoration in transmittance. Cycles of light rainfall and evaporation combined with a humid and salty environment led to cementation occurring on all coupons. The development of an abrasion-resistant, super-hydrophobic coating with a low roll-off angle and high water contact angle is more likely to provide an anti-soiling solution by reducing the build-up of cementation.
It is of an increasing interest for the solar research community to understand and master the effects of environmental conditions on photovoltaic (PV) module performance and reliability. This study demonstrates that soiling is not only an issue for PV installed in dusty and dry regions of The Middle East and North Africa. Soiling is a global problem and the type of soiling and its extent is dependent on the geographical location. Cementation, a process by which particles strongly adhere to the surface, has been observed on all surfaces exposed outdoors in a coastal location of Denmark and experiments are ongoing in two different geographical locations and climates. Applying hydrophobic coatings to PV module cover glass is a potential solution to minimize soiling. Although the use of a hydrophobic coating was initially effective, its gradual degradation was linked to the build-up of surface cementation. Degradation of the hydrophobic surface chemistry increases surface energy and leads to the formation of hard to remove cementation. This results in the retention of droplets and particles causing a reduction in the optical transmission into the module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.