In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3 < p has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process can not be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of p T decrease, whileas the p T increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario.
We argue that measurements of identified-particle elliptic flow in a wide energy range could shed light on the possible phase change in high-energy heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC). When the hadronization process is dominated by quark coalescence, the number-of-constituent-quark (NCQ) scaling for the identified-particle elliptic flow can serve as a probe for studying the strong interacting partonic matter. In the upcoming RHIC low-energy runs, the NCQ scaling behavior may be broken because of the change of the effective degrees of freedom of the hot dense matter, which corresponds to the transition from the dominant partonic phase to the dominant hadronic phase. A multiphase transport model is used to present the dependence of NCQ scaling behavior on the different hadronization mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.