1-n-Butyl-3-methylimidazolium hexafluorophosphate room-temperature ionic liquid is not only suitable as a medium for the preparation and stabilization of iridium nanoparticles but also ideal for the generation of recyclable biphasic catalytic systems for hydrogenation reactions. Thus, Ir(0) nanoparticles with a mean diameter of 2 nm have been prepared by reduction of Ir(I) dissolved in the ionic liquid with H2. This catalytic solution can be reused several times for the biphasic hydrogenation of olefins under mild reaction conditions.
Stable transition-metal nanoparticles of the type [M(0)](n) are easily accessible through the reduction of Ir(I) or Rh(III) compounds dissolved in "dry" 1-n-butyl-3-methylimidazolium hexafluorophosphate ionic liquid by molecular hydrogen. The formation of these [M(0)](n) nanoparticles is straightforward; they are prepared in dry ionic liquid whereas the presence of the water causes the partial decomposition of ionic liquid with the formation of phosphates, HF and transition-metal fluorides. Transmission electron microscopy (TEM) observations and X-ray diffraction analysis (XRD) show the formation of [Ir(0)](n) and [Rh(0)](n) nanoparticles with 2.0-2.5 nm in diameter. The isolated [M(0)](n) nanoparticles can be redispersed in the ionic liquid, in acetone or used in solventless conditions for the liquid-liquid biphasic, homogeneous or heterogeneous hydrogenation of arenes under mild reaction conditions (75 degrees C and 4 atm). The recovered iridium nanoparticles can be reused several times without any significant loss in catalytic activity. Unprecedented total turnover numbers (TTO) of 3509 in 32 h, for arene hydrogenation by nanoparticles catalysts, have been achieved in the reduction of benzene by the [Ir(0)](n) in solventless conditions. Contrarily, the recovered Rh(0) nanoparticles show significant agglomeration into large particles with a loss of catalytic activity. The hydrogenation of arenes containing functional groups, such as anisole, by the [Ir(0)](n) nanoparticles occurs with concomitant hydrogenolysis of the C-O bond, suggesting that these nanoparticles behave as "heterogeneous catalysts" rather than "homogeneous catalysts".
The influence of substituents on rate constants of the hydrogenation of monoalkylbenzenes by transition metal nanoparticles or by classical heterogeneous catalysts can be rationalized in terms of the Taft rule. A series of the initial reaction rate constants obtained from various competitive toluene/benzene and toluene/monoalkylbenzene hydrogenation experiments catalyzed by transition-metal nanoparticles prepared in the presence of imidazolium ionic liquids or surfactants [Ir(0), Rh(0) and Ru (0) The results clearly show that the reaction constants for the alkyl-substituents can be expressed by steric factors and are independent of any other nonsteric factors. It is suggested that bulky alkylbenzene substituents, for both transition metal nanoparticles and classical heterogeneous hydrogenation reactions, lower the overall hydrogenation rate, implying a more disturbed transition state compared to the initial state of the hydrogenation (in terms of the HoriutiPolanyi mechanism). This competitive method is suitable for the estimation of the constant selectivity for couples of alkylbenzenes in which the difference in hydrogenation rates are very high and experimentally difficult to measure and also useful for the design of more selective "nano" and classical catalysts for hydrogenation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.