Generation of soluble sources of peroxide dianion (O(2)(2-)) is a challenge in dioxygen chemistry. The oxidizing nature of this anion renders its stabilization in organic media difficult. This Report describes the chemically reversible reduction of oxygen (O(2)) to cryptand-encapsulated O(2)(2-). The dianion is stabilized by strong hydrogen bonds to N-H groups from the hexacarboxamide cryptand. Analogous stabilization of peroxide by hydrogen bonding has been invoked recently in crystalline saccharide and protein systems. The present peroxide adducts are stable at room temperature in dimethyl sulfoxide (DMSO) and N,N'-dimethylformamide (DMF). These adducts can be obtained in gram quantities from the cryptand-driven disproportionation reaction of potassium superoxide (KO(2)) at room temperature.
Oxygen-oxygen bond formation and O 2 generation occur from the S 4 state of the oxygen-evolving complex (OEC). Several mechanistic possibilities have been proposed for water oxidation, depending on the formal oxidation state of the Mn atoms. All fall under two general classifications: the AB mechanism in which nucleophilic oxygen (base, B) attacks electrophilic oxygen (acid, A) of the Mn 4 Ca cluster or the RC mechanism in which radical-like oxygen species couple within OEC. The critical intermediate in either mechanism involves a metal oxo, though the nature of this oxo for AB and RC mechanisms is disparate. In the case of the AB mechanism, assembly of an even-electron count, high-valent metal-oxo proximate to a hydroxide is needed whereas, in an RC mechanism, two odd-electron count, high-valent metal oxos are required. Thus the two mechanisms give rise to very different design criteria for functional models of the OEC active site. This discussion presents the electron counts and ligand geometries that support metal oxos for AB and RC O-O bond-forming reactions. The construction of architectures that bring two oxygen functionalities together under the purview of the AB and RC scenarios are described.
The Pd(I)-Pd(I) dimer [((F)PNP)Pd-](2) reacts with O(2) upon exposure to light to produce either the superoxide ((F)PNP)PdO(2) or the peroxide [((F)PNP)PdO-](2), which exist in equilibrium with free O(2). Both complexes contain square-planar Pd(II) centers. The unpaired electron density in ((F)PNP)PdO(2) is localized on the superoxide ligand.
A series of coordination compounds has been prepared comprising manganese, iron, nickel, and zinc bound by a hexaanionic cryptand where carboxamides are anionic N-donors. The metal complexes have been investigated by X-ray crystallography, and possess metal centers in trigonal monopyramidal geometries with intermetallic distances spanning d(Mn,avg) = 6.080 Å to d(Ni,avg) = 6.495 Å. All complexes featuring trigonal monopyramidal metal(II) ions crystallize in Cc, and feature extended three-dimensional networks composed of cryptate anions linked by bridging potassium countercations. We also report the first solid state structure of the free cryptand ligand, which features no guest in its cavity and which possesses an extended hydrogen-bonding network. SQuID magnetometry data of the metal complexes reveal weak antiferromagnetic coupling of the metal centers. Only the diiron(II) complex exhibits reversible electrochemistry, and correspondingly, its chemical oxidation yields a powder formulated as the diiron(III) congener. The insertion of cyanide into the intermetallic cleft of the diiron(II) complex has been achieved, and comparisons of its solid state structure to the recently reported dicobalt(II) analogue are made. The antiferromagnetic coupling between the diiron(II) and the dicobalt(II) centers when bridged by cyanide does not increase significantly relative to the unbridged congeners. A one-site model satisfactorily fits Mössbauer spectra of unbridged diiron(II) and diiron(III) complexes whereas a two site fit was needed to model the iron(II) centers that are bridged by cyanide.
A hexacarboxamide cryptand featuring appended polyether moieties is used as a binucleating ligand for two Co(II) centers, marking the first time cryptands have been used as hexaanionic N donors for metal coordination. A synthesis for the hexacarboxamide cryptand, culminating in a 23% yield high-dilution step and proceeding in 8% overall yield, is reported. The ligand is metalated using cobalt(II) acetate, and a solid-state structure is presented, revealing an intermetallic void over 6.4 A in length. The reactivity of this new type of cryptate is also probed; treatment of the dicobalt cryptate with potassium cyanide at elevated temperature results in a bridging cyanide complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.