Extra-pair paternity (EPP), where offspring are sired by a male other than the social male, varies enormously both within and among species. Trying to explain this variation has proved difficult because the majority of the interspecific variation is phylogenetically based. Ideally, variation in EPP should be investigated in closely related species, but clades with sufficient variation are rare. We present a comprehensive multifactorial test to explain variation in EPP among individuals in 20 populations of nine species over 89 years from a single bird family (Maluridae). Females had higher EPP in the presence of more helpers, more neighbours or if paired incestuously. Furthermore, higher EPP occurred in years with many incestuous pairs, populations with many helpers and species with high male density or in which males provide less care. Altogether, these variables accounted for 48% of the total and 89% of the interspecific and interpopulation variation in EPP. These findings indicate why consistent patterns in EPP have been so challenging to detect and suggest that a single predictor is unlikely to account for the enormous variation in EPP across levels of analysis. Nevertheless, it also shows that existing hypotheses can explain the variation in EPP well and that the density of males in particular is a good predictor to explain variation in EPP among species when a large part of the confounding effect of phylogeny is excluded.
Birds are declining in agricultural landscapes around the world. The causes of these declines can be better understood by analysing change in groups of species that share life-history traits. We investigated how land-use change has affected birds of the Tasmanian Midlands, one of Australia's oldest agricultural landscapes and a focus of habitat restoration. We surveyed birds at 72 sites, some of which were previously surveyed in 1996-1998, and tested relationships of current patterns of abundance and community composition to landscape and patch-level environmental characteristics. Fourthcorner modelling showed strong negative responses of aerial foragers and exotics to increasing woodland cover; arboreal foragers were positively associated with projective foliage cover; and small-bodied species were reduced by the presence of a hyperaggressive species of native honeyeater, the noisy miner (Manorina melanocephala). Analysis of change suggests increases in large-bodied granivorous or carnivorous birds and declines in some arboreal foragers and nectarivores. Changes in species richness were best explained by changes in noisy miner abundance and levels of surrounding woodland cover. We encourage restoration practitioners to trial novel planting configurations that may confer resistance to invasion by noisy miners, and a continued long-term monitoring effort to reveal the effects of future land-use change on Tasmanian birds.
Temperate woodlands are amongst the most threatened ecosystems in Australia because the land on which they occur is highly suited to agriculture. Two hundred years of habitat loss and fragmentation in the Midlands agricultural region in Tasmania have led to widespread declines in native vertebrates and landscapes with populations of predators including feral Cat (Felis catus) and the native-invasive Noisy Miner (Manorina melanocephala). Ecologists at the University of Tasmania co-designed mechanistic animal-centric research on mammals and birds in the Midlands to inform vegetation restoration carried out by Greening Australia that would support the recovery of wildlife species. We used speciesappropriate technologies to assess the decisions made by individual animals to find food and shelter and to disperse across this fragmented landscape, and linked these, together with patterns of occupancy, across multiple spatial and temporal scales. We focussed on a native (Spotted-tailed Quoll, Dasyurus maculatus) and an invasive (feral Cat, Felis catus) carnivore, a woodland-specialist herbivore (Eastern Bettong, Bettongia gaimardi) and woodland birds including the native-invasive Noisy Miner. Our results, which show intense predatory and competitive pressure of cats and populations of Noisy Miner on native fauna, highlight how grounding restoration in the context of ecological interactions is essential to success in managing the impacts of invasive species in restored landscapes. Successful restoration will require innovative approaches in plantings and field experimentation with artificial refuges, to reduce habitat suitability for the Noisy Miner and cats and provide refuges for native mammals and birds to live in the landscape where cats also occur. Our results emphasise the significance of structural complexity of restoration plantings for supporting the recolonisation and persistence of native fauna. At large landscape-scale, we demonstrate the importance of retaining small habitat elements, including ancient paddock trees, pivot irrigation corners and small, degraded remnants, in facilitating occupancy and dispersal and, therefore, persistence of wild animals across this agricultural region.
The frequency of extra-pair paternity (EPP) in socially monogamous birds varies substantially between and within species, but ecological drivers of this variation remain poorly understood. Habitat configuration could influence EPP by moderating access to extra-pair mates, because species occupying territories in a clustered 'honeycomb' configuration have a larger pool of potential extra-group mates in their immediate neighbourhood than those living in linearly arranged territories (e.g. along narrow strips of riparian or fragmented habitat). We exploited variation in the spatial arrangement of territories due to anthropogenic modification of habitat of the cooperatively breeding superb fairy-wren Malurus cyaneus to test whether habitat configuration influenced the frequency of EPP. In this species, most paternity is obtained by males outside the social group [extra-group paternity (EGP)]. We found that the frequency of EGP among groups living in linear strips of roadside vegetation (41% of 44 offspring) was lower than it was for groups living in clustered territories within continuous habitat (59% of 70 offspring). Differences in group size and pair relatedness did not explain differences in EGP associated with territory configuration, although the frequency of EGP was negatively correlated with pair relatedness. Our finding suggests that territory configuration can influence rates of EGP and that anthropogenic habitat fragmentation has the potential to limit access to extra-pair mates, affecting mating systems and ultimately fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.