NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 1 D espite two decades of effort to curb emissions of CO 2 and other greenhouse gases (GHGs), emissions grew faster during the 2000s than in the 1990s 1 , and by 2010 had reached ~50 Gt CO 2 equivalent (CO 2 eq) yr −1 (refs 2,3). The continuing rise in emissions is a growing challenge for meeting the international goal of limiting warming to less than 2 °C relative to the pre-industrial era, particularly without stringent climate policies to decrease emissions in the near future 2-4 . As negative emissions technologies (NETs) seem ever more necessary 3,[5][6][7][8][9][10] To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.options, to be able to decide which pathways are most desirable for dealing with climate change.There are distinct classes of NETs, such as: (1) bioenergy with carbon capture and storage (BECCS) 11,12 ; (2) direct air capture of CO 2 from ambient air by engineered chemical reactions (DAC) 13,14 ; (3) enhanced weathering of minerals (EW) 15 , where natural weathering to remove CO 2 from the atmosphere is accelerated and the products stored in soils, or buried in land or deep ocean [16][17][18][19] ; (4) afforestation and reforestation (AR) to fix atmospheric carbon in biomass and soils [20][21][22] ; (5) manipulation of carbon uptake by the ocean, either
Despite the emergence of regional climate policies, growth in global CO 2 emissions has remained strong. From 1990 to 2008 CO 2 emissions in developed countries (defined as countries with emissionreduction commitments in the Kyoto Protocol, Annex B) have stabilized, but emissions in developing countries (non-Annex B) have doubled. Some studies suggest that the stabilization of emissions in developed countries was partially because of growing imports from developing countries. To quantify the growth in emission transfers via international trade, we developed a trade-linked global database for CO 2 emissions covering 113 countries and 57 economic sectors from 1990 to 2008. We find that the emissions from the production of traded goods and services have increased from 4.3 Gt CO 2 in 1990 (20% of global emissions) to 7.8 Gt CO 2 in 2008 (26%). Most developed countries have increased their consumption-based emissions faster than their territorial emissions, and non-energy-intensive manufacturing had a key role in the emission transfers. The net emission transfers via international trade from developing to developed countries increased from 0.4 Gt CO 2 in 1990 to 1.6 Gt CO 2 in 2008, which exceeds the Kyoto Protocol emission reductions. Our results indicate that international trade is a significant factor in explaining the change in emissions in many countries, from both a production and consumption perspective. We suggest that countries monitor emission transfers via international trade, in addition to territorial emissions, to ensure progress toward stabilization of global greenhouse gas emissions.carbon footprint | carbon leakage | emissions embodied in trade | inputoutput analysis | emission inventory
Abstract. The global methane (CH 4 ) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH 4 over the past decade. Emissions and concentrations of CH 4 are continuing to increase, making CH 4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH 4 sources that overlap geographically, and from the destruction of CH 4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). . Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH 4 yr −1 , range 51-72, −14 %) and higher emissions in Africa (86 Tg CH 4 yr −1 , range 73-108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models.The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30-40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions.
Processes causing greenhouse gas (GHG) emissions benefit humans by providing consumer goods and services. This benefit, and hence the responsibility for emissions, varies by purpose or consumption category and is unevenly distributed across and within countries. We quantify greenhouse gas emissions associated with the final consumption of goods and services for 73 nations and 14 aggregate world regions. We analyze the contribution of 8 categories: construction, shelter, food, clothing, mobility, manufactured products, services, and trade. National average per capita footprints vary from 1 tCO 2 e/y in African countries to ∼30t/y in Luxembourg and the United States. The expenditure elasticity is 0.57. The cross-national expenditure elasticity for just CO 2 , 0.81, corresponds remarkably well to the cross-sectional elasticities found within nations, suggesting a global relationship between expenditure and emissions that holds across several orders of magnitude difference. On the global level, 72% of greenhouse gas emissions are related to household consumption, 10% to government consumption, and 18% to investments. Food accounts for 20% of GHG emissions, operation and maintenance of residences is 19%, and mobility is 17%. Food and services are more important in developing countries, while mobility and manufactured goods rise fast with income and dominate in rich countries. The importance of public services and manufactured goods has not yet been sufficiently appreciated in policy. Policy priorities hence depend on development status and country-level characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.