Long-term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation. In this paper, we briefly discuss five key values of such studies. These are: (1) quantifying ecological responses to drivers of ecosystem change; (2) understanding complex ecosystem processes that occur over prolonged periods; (3) providing core ecological data that may be used to develop theoretical ecological models and to parameterize and validate simulation models; (4) acting as platforms for collaborative studies, thus promoting multidisciplinary research; and (5) providing data and understanding at scales relevant to management, and hence critically supporting evidence-based policy, decision making and the management of ecosystems. We suggest that the ecological research community needs to put higher priority on communicating the benefits of long-term ecological studies to resource managers, policy makers and the general public. Long-term research will be especially important for tackling large-scale emerging problems confronting humanity such as resource management for a rapidly increasing human population, mass species extinction, and climate change detection, mitigation and adaptation. While some ecologically relevant, long-term data sets are now becoming more generally available, these are exceptions. This deficiency occurs because ecological studies can be difficult to maintain for long periods as they exceed the length of government administrations and funding cycles. We argue that the ecological research community will need to coordinate ongoing efforts in an open and collaborative way, to ensure that discoverable long-term ecological studies do not become a long-term deficiency. It is important to maintain publishing outlets for empirical field-based ecology, while simultaneously developing new systems of recognition that reward ecologists for the use and collaborative sharing of their long-term data sets. Funding schemes must be re-crafted to emphasize collaborative partnerships between field-based ecologists, theoreticians and modellers, and to provide financial support that is committed over commensurate time frames.
A general understanding of biological invasions will provide insights into fundamental ecological and evolutionary problems and contribute to more efficient and effective prediction, prevention and control of invasions. We review recent papers that have proposed conceptual frameworks for invasion biology. These papers offer important advances and signal a maturation of the field, but a broad synthesis is still lacking. Conceptual frameworks for invasion do not require invocation of unique concepts, but rather should reflect the unifying principles of ecology and evolutionary biology. A conceptual framework should incorporate multicausality, include interactions between causal factors and account for lags between various stages. We emphasize the centrality of demography in invasions, and distinguish between explaining three of the most important characteristics by which we recognize invasions: rapid local population increase, monocultures or community dominance, and range expansion. As a contribution towards developing a conceptual synthesis of invasions based on these criteria, we outline a framework that explicitly incorporates consideration of the fundamental ecological and evolutionary processes involved. The development of a more inclusive and mechanistic conceptual framework for invasion should facilitate quantitative and testable evaluation of causal factors, and can potentially lead to a better understanding of the biology of invasions.
Summary1. Schedules of survival, growth and reproduction are key life-history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population *Correspondence author. E-mails: salguero@demogr.mpg.de; compadre-contact@demogr.mpg.de † Joint senior author. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. 2015, 103, 202-218 doi: 10.1111/1365-2745.12334 growth or decline, such data help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change and how to develop successful management tools for endangered or invasive species. Journal of Ecology2. Matrix population models summarize the life cycle components of survival, growth and reproduction, while explicitly acknowledging heterogeneity among classes of individuals in the population. Matrix models have comparable structures, and their emergent measures of population dynamics, such as population growth rate or mean life expectancy, have direct biological interpretations, facilitating comparisons among populations and species. 3. Thousands of plant matrix population models have been parameterized from empirical data, but they are largely dispersed through peer-reviewed and grey literature, and thus remain inaccessible for synthetic analysis. Here, we introduce the COMPADRE Plant Matrix Database version 3.0, an opensource online repository containing 468 studies from 598 species world-wide (672 species hits, when accounting for species studied in more than one source), with a total of 5621 matrices. COMPADRE also contains relevant ancillary information (e.g. ecoregion, growth form, taxonomy, phylogeny) that facilitates interpretation of the numerous demographic metrics that can be derived from the matrices. 4. Synthesis. Large collections of data allow broad questions to be addressed at the global scale, for example, in genetics (GENBANK), functional plant ecology (TRY, BIEN, D3) and grassland community ecology (NUTNET). Here, we present COMPADRE, a similarly data-rich and ecologically relevant resource for plant demography. Open access to this information, its frequent updates and its integration with other online resources will allow researchers to address timely and important ecological and evolutionary questions.
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.