Information contained in the x-ray energy spectrum can be used to produce selective radiographic images of bone or soft tissue. A method has been devised to separate bone and soft tissue based upon differences in photoelectric absorption and Compton scattering using an appropriate combination of images obtained with radiographic exposures at 70 KVP and 140 KVP. Since photoelectric absorption is highly dependent upon atomic number, high atomic number materials such as calcium can be easily separated from water density substances. Using a prototype system for line-scanned radiography, selective subtraction of bone or soft-tissue has been implemented. Because this method uses a conventional broad-spectrum x-ray source, it was necessary to develop a nonlinear polynomial approximation to estimate tissue and bone thickness. The model was verified with phantom studies using water and aluminum. The application of this dual-energy bone and soft-tissue separation to chest radiography is demonstrated. This method allows accurate estimation of tissue and bone thickness and should find application to chest radiography for improved lesion detection and for bone mineral assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.