As the prevalence and everyday use of machine learning algorithms, along with our reliance on these algorithms grow dramatically, so do the efforts to attack and undermine these algorithms with malicious intent, resulting in a growing interest in adversarial machine learning. A number of approaches have been developed that can render a machine learning algorithm ineffective through poisoning or other types of attacks. Most attack algorithms typically use sophisticated optimization approaches, whose objective function is designed to cause maximum damage with respect to accuracy and performance of the algorithm with respect to some task. In this effort, we show that while such an objective function is indeed brutally effective in causing maximum damage on an embedded feature selection task, it often results in an attack mechanism that can be easily detected with an embarrassingly simple novelty or outlier detection algorithm. We then propose an equally simple yet elegant solution by adding a regularization term to the attacker's objective function that penalizes outlying attack points.
In this brief, we show that sequentially learning new information presented to a continual (incremental) learning model introduces new security risks: an intelligent adversary can introduce small amount of misinformation to the model during training to cause deliberate forgetting of a specific task or class at test time, thus creating "false memory" about that task. We demonstrate such an adversary's ability to assume control of the model by injecting "backdoor" attack samples to commonly used generative replay and regularization based continual learning approaches using continual learning benchmark variants of MNIST, as well as the more challenging SVHN and CIFAR 10 datasets. Perhaps most damaging, we show this vulnerability to be very acute and exceptionally effective: the backdoor pattern in our attack model can be imperceptible to human eye, can be provided at any point in time, can be added into the training data of even a single possibly unrelated task and can be achieved with as few as just 1% of total training dataset of a single task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.