Recent studies suggest that freshwater turtle populations are becoming increasingly male-biased. A hypothesized cause is a greater vulnerability of female turtles to road mortality. We evaluated this hypothesis by comparing sex ratios from published and unpublished population surveys of turtles conducted on-versus offroads. Among 38 166 turtles from 157 studies reporting sex ratios, we found a consistently larger female fraction in samples from on-roads (61%) than off-roads (41%). We conclude that female turtles are indeed more likely to cross roadways than are males, which may explain recently reported skewed sex ratios near roadways and signify eventual population declines as females are differentially eliminated.
Throughout its distribution in North America, the threatened eastern massasauga rattlesnake (Sistrurus c. catenatus) persists in a series of habitat-isolated disjunct populations of varying size. Here, we use six microsatellite DNA loci to generate information on the degree of genetic differentiation between, and the levels of inbreeding within populations to understand how evolutionary processes operate in these populations and aid the development of conservation plans for this species. Samples were collected from 199 individuals from five populations in Ontario, New York and Ohio. Our results show that all sampled populations: (i) differ significantly in allele frequencies even though some populations are < 50 km apart, and may contain genetically distinct subpopulations < 2 km apart; (ii) have an average of 23% of alleles that are population specific; and (iii) have significant FIS values (mean overall FIS = 0.194) probably due to a combination of Wahlund effects resulting from fine-scale genetic differentiation within populations and the presence of null alleles. Our results imply that massasauga populations may be genetically structured on an extremely fine scale even within continuous populations, possibly due to limited dispersal. Additional information is needed to determine if dispersal and mating behaviour within populations can account for this structure and whether the observed differentiation is due to random processes such as drift or to local adaptation. From a conservation perspective, our results imply that these massasauga populations should be managed as demographically independent units and that each has high conservation value in terms of containing unique genetic variation.
Because particular life history traits affect species vulnerability to development pressures, cross-species summaries of life history traits are useful for generating management guidelines. Conservation of aquatic turtles, many members of which are regionally or globally imperiled, requires knowing the extent of upland habitat used for nesting. Therefore, we compiled distances that nests and gravid females had been observed from wetlands. Based on records of > 8000 nests and gravid female records compiled for 31 species in the United States and Canada, the distances that encompass 95% of nests vary dramatically among genera and populations, from just 8 m forMalaclemys to nearly 1400 m for Trachemys. Widths of core areas to encompass varying fractions of nesting populations (based on mean maxima across all genera) were estimated as: 50% coverage = 93 m, 75% = 154 m, 90% = 198 m, 95% = 232 m, 100% = 942 m. Approximately 6-98 m is required to encompass each consecutive 10% segment of a nesting population up to 90% coverage; thereafter, ca. 424 m is required to encompass the remaining 10%. Many genera require modest terrestrial areas (zones) for 95% nest coverage (Actinemys, Apalone, Chelydra, Chrysemys, Clemmys,Glyptemys, Graptemys, Macrochelys, Malaclemys, Pseudemys, Sternotherus), whereas other genera require larger zones (Deirochelys, Emydoidea, Kinosternon, Trachemys). Our results represent planning targets for conserving sufficient areas of uplands around wetlands to ensure protection of turtle nesting sites, migrating adult female turtles, and dispersing turtle hatchlings. Our results represent planning targets for conserving sufficient areas of uplands around wetlands to ensure protection of turtle nesting sites, migrating adult female turtles, and dispersing turtle hatchlings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.